
UAV Toolbox
User's Guide

R2020b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

UAV Toolbox User's Guide
© COPYRIGHT 2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2020 Online only New for Version 1.0 (R2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

UAV Toolbox Examples
1

Visualize and Playback MAVLink Flight Log . 1-2

Flight Instrument Gauge Visualization for a Drone 1-5

Visualize Custom Flight Log . 1-11

Tuning Waypoint Follower for Fixed-Wing UAV . 1-25

Approximate High-Fidelity UAV model with UAV Guidance Model block
. 1-29

Motion Planning with RRT for Fixed-Wing UAV . 1-40

UAV Package Delivery . 1-46

UAV Scenario Tutorial . 1-57

Tune UAV Parameters Using MAVLink Parameter Protocol 1-61

Exchange Data for MAVLink Microservices like Mission Protocol and
Parameter Protocol Using Simulink . 1-66

3D Simulation – User's Guide
2

Unreal Engine Simulation for Unmanned Aerial Vehicles 2-2
Unreal Engine Simulation Blocks . 2-2
Algorithm Testing and Visualization . 2-3

Unreal Engine Simulation Environment Requirements and Limitations
. 2-5

Software Requirements . 2-5
Minimum Hardware Requirements . 2-5
Limitations . 2-5

How Unreal Engine Simulation for UAVs Works . 2-7
Communication with 3D Simulation Environment 2-7
Block Execution Order . 2-7

iii

Contents

Coordinate Systems for Unreal Engine Simulation in UAV Toolbox 2-9
Earth-Fixed (Inertial) Coordinate System . 2-9
Body (Non-Inertial) Coordinate System . 2-9
Unreal Engine World Coordinate System . 2-11

Choose a Sensor for Unreal Engine Simulation . 2-13

Simulate Simple Flight Scenario and Sensor in Unreal Engine
Environment . 2-14

Depth and Semantic Segmentation Visualization Using Unreal Engine
Simulation . 2-19

Customize Unreal Engine Scenes for UAVs . 2-24

Install Support Package for Customizing Scenes 2-25
Verify Software and Hardware Requirements . 2-25
Install Support Package . 2-25
Set Up Scene Customization Using Support Package 2-25

Customize Unreal Engine Scenes Using Simulink and Unreal Editor . . . 2-28
Open Unreal Editor from Simulink . 2-28
Reparent Actor Blueprint . 2-29
Create or Modify Scenes in Unreal Editor . 2-29
Run Simulation . 2-31

Package Custom Scenes into Executable . 2-33
Package Scene into Executable Using Unreal Engine 2-33

Apply Semantic Segmentation Labels to Custom Scenes 2-35

iv Contents

UAV Toolbox Examples

1

Visualize and Playback MAVLink Flight Log
This example shows how to load a telemetry log (TLOG) containing MAVLink packets into MATLAB®.
Details of the messages are extracted for plotting. Then, to simulate the flight again, the messages
are republished over the MAVLink communication interface. This publishing mimics an unmanned
aerial vehicle (UAV) executing the flight recorded in the tlog.

Load MAVLink TLOG

Create a mavlinkdialect object using the "common.xml" dialect. Use mavlinktlog with this
dialect to load the TLOG data.

dialect = mavlinkdialect('common.xml');
logimport = mavlinktlog('mavlink_flightlog.tlog',dialect);

Extract the GPS messages from the TLOG and visualize them using geoplot.

msgs = readmsg(logimport, 'MessageName', 'GPS_RAW_INT', ...
 'Time',[0 100]);
latlon = msgs.Messages{1};
% filter out zero-valued messages
latlon = latlon(latlon.lat ~= 0 & latlon.lon ~= 0, :);
figure()
geoplot(double(latlon.lat)/1e7, double(latlon.lon)/1e7);

Extract the attitude messages from the TLOG. Specify the message name for attitude messages. Plot
the roll, pitch, yaw data using stackedplot.

1 UAV Toolbox Examples

1-2

msgs = readmsg(logimport,'MessageName','ATTITUDE','Time',[0 100]);

figure()
stackedplot(msgs.Messages{1},{'roll','pitch','yaw'});

Playback MAVLink Log Entries

Create a MAVLink communication interface and publish the messages from the TLOG to user defined
UDP port. Create a sender and receiver for passing the MAVLink messages. This communication
system works the same way that real hardware would publish messages using the MAVLink
communication protocols.

sender = mavlinkio(dialect,'SystemID',1,'ComponentID',1,...
 'AutopilotType',"MAV_AUTOPILOT_GENERIC",...
 'ComponentType',"MAV_TYPE_QUADROTOR");
connect(sender,'UDP');

destinationPort = 14550;
destinationHost = '127.0.0.1';

receiver = mavlinkio(dialect);
connect(receiver,'UDP','LocalPort',destinationPort);

subscriber = mavlinksub(receiver,'ATTITUDE','NewMessageFcn',@(~,msg)disp(msg.Payload));

Send the first 100 messages at a rate of 50 Hz.

 Visualize and Playback MAVLink Flight Log

1-3

payloads = table2struct(msgs.Messages{1});
attitudeDefinition = msginfo(dialect, 'ATTITUDE');
for msgIdx = 1:100
 sendudpmsg(sender,struct('MsgID', attitudeDefinition.MessageID, 'Payload', payloads(msgIdx)),destinationHost,destinationPort);
 pause(1/50);
end

Disconnect from both MAVLink communcation interfaces.

disconnect(receiver)
disconnect(sender)

1 UAV Toolbox Examples

1-4

Flight Instrument Gauge Visualization for a Drone
Import and visualize a drone flight log using 3-D animations and flight intrument gauges. This
example obtains a high level overview of flight performance in MATLAB® using “Flight Instruments”
(Aerospace Toolbox) functions in Aerospace Toolbox™. Then, to view signals in a custom interface in
Simulink® , the example uses the “Flight Instruments” (Aerospace Blockset) blocks from Aerospace
Blockset™

The example extracts the signals of interest from a ULOG file and plays back the UAV flight trajectory
in MATLAB. Then, those signals are replayed in a Simulink model using instrument blocks.

Import a Flight log

A drone log file records information about the flight at regular time intervals. This information gives
insight into the flight performance. Flight instrument gauges display navigation variables such as
attitude, altitude, and heading of the drone. The ULOG log file for this example was obtained from an
airplane model running in the Gazebo simulator.

Import the logfile using ulogreader. Create a flightLogSignalMapping object for ULOG files.

To understand the convention of the signals, the units, and their reference frame, inspect the
information within the plotter object. This information about units within log file becomes
important when connecting the signals to flight instrument gauges.

data = ulogreader("fwflight.ulg");
plotter = flightLogSignalMapping("ulog");
info(plotter,"Signal")

ans=14×4 table
 SignalName IsMapped SignalFields FieldUnits
 _____________________ ________ __ ___

 "Accel" true "AccelX, AccelY, AccelZ" "m/s^2, m/s^2, m/s^2"
 "Airspeed" true "PressDiff, IndicatedAirSpeed, Temperature" "Pa, m/s, degreeC"
 "AttitudeEuler" true "Roll, Pitch, Yaw" "rad, rad, rad"
 "AttitudeRate" true "BodyRotationRateX, BodyRotationRateY, BodyRotationRateZ" "rad/s, rad/s, rad/s"
 "AttitudeTargetEuler" true "RollTarget, PitchTarget, YawTarget" "rad, rad, rad"
 "Barometer" true "PressAbs, PressAltitude, Temperature" "Pa, m, degreeC"
 "Battery" true "Voltage_1, Voltage_2, Voltage_3, Voltage_4, Voltage_5, Voltage_6, Voltage_7, Voltage_8, Voltage_9, Voltage_10, Voltage_11, Voltage_12, Voltage_13, Voltage_14, Voltage_15, Voltage_16, RemainingCapacity" "v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, %"
 "GPS" true "Latitude, Longitude, Altitude, GroundSpeed, CourseAngle, SatellitesVisible" "degree, degree, m, m/s, degree, N/A"
 "Gyro" true "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"
 "LocalNED" true "X, Y, Z" "m, m, m"
 "LocalNEDTarget" true "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalNEDVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 "LocalNEDVelTarget" true "VXTarget, VYTarget, VZTarget" "m/s, m/s, m/s"
 "Mag" true "MagX, MagY, MagZ" "Gs, Gs, Gs"

Extract Signals of Interest

To visualize the drone flight using instrument gauges, extract the attitude, position, velocity, and
airspeed at each timestep. Specify the appropriate signal name from the info table in the previous
step. Call the extract function with the appropriate signal names. The time vector element of
signals are adjusted so they start at 0 seconds.

% Extract attitude and roll-pitch-yaw data.
rpy = extract(plotter, data,"AttitudeEuler");

 Flight Instrument Gauge Visualization for a Drone

1-5

rpy{1}.Time=rpy{1}.Time-rpy{1}.Time(1);

RollData = timetable(rpy{1}.Time,rpy{1}.Roll,...
 'VariableNames',{'Roll'});
PitchData = timetable(rpy{1}.Time,rpy{1}.Pitch,...
 'VariableNames',{'Pitch'});
YawData = timetable(rpy{1}.Time,rpy{1}.Yaw,...
 'VariableNames',{'Yaw'});

% Extract position and xyz data.
Position = extract(plotter, data,"LocalNED");
Position{1}.Time = Position{1}.Time-Position{1}.Time(1);

X = timetable(Position{1}.Time,Position{1}.X,...
 'VariableNames',{'X'});
Y = timetable(Position{1}.Time,Position{1}.Y,...
 'VariableNames',{'Y'});
Z = timetable(Position{1}.Time,Position{1}.Z,...
 'VariableNames',{'Z'});

% Extract velocity data.
vel = extract(plotter, data,"LocalNEDVel");
vel{1}.Time=vel{1}.Time-vel{1}.Time(1);

XVel = timetable(vel{1}.Time,vel{1}.VX,...
 'VariableNames',{'VX'});
YVel = timetable(vel{1}.Time,vel{1}.VY,...
 'VariableNames',{'VY'});
ZVel = timetable(vel{1}.Time,vel{1}.VZ,...
 'VariableNames',{'VZ'});

% Extract Airspeed magnitude data.
airspeed = extract(plotter, data,"Airspeed");
Airspeed = timetable(airspeed{1}.Time,airspeed{1}.IndicatedAirSpeed,...
 'VariableNames',{'Airspeed'});

Convert Units and Preprocess Data for Gauges

Our flight log records data in SI Units. The flight instrument gauges require a conversion to
Aerospace Standard Unit System represented by English System. This conversion is handled in the
visualization block available in attached Simulink model for the user. The turn coordinator indicates
the yaw rate of the aircraft using an indicative banking motion (which differs from the bank angle). In
order to compute the yaw rate, convert the angular rates from body frame to vehicle frame as given
below:

ψ̇ = qcos ϕ + rsin ϕ
cosθ

The inclinometer ball within turn coordinator indicates the sideslip of the aircraft. This sideslip angle
is based on the angle between the body of the aircraft and computed airspeed. For an accurate
airspeed, a good estimate of velocity and wind vector is required. Most small UAV's do not possess
sensors to estimate wind vector data or airspeed while flying. UAV's can face between 20-50% of their
airspeed in the form of crosswinds.

Vg- Vw=Va

To compute sideslip and turn, extract wind and attitude rate data directly from the log file.

1 UAV Toolbox Examples

1-6

% Extract roll, pitch and yaw rates and an estimated windspeed.
[p,q,r,wn,we] = helperExtractUnmappedData(data);

% Merge timetables.
FlightData = synchronize(X,Y,Z,RollData,PitchData,YawData,XVel,YVel,ZVel,p,q,r,Airspeed,wn,we,'union','linear');

% Assemble an array for the data.
FlightDataArray = double([seconds(FlightData.Time) FlightData.X FlightData.Y FlightData.Z FlightData.Roll ...
FlightData.Pitch FlightData.Yaw,FlightData.VX,FlightData.VY,...
 FlightData.VZ,FlightData.p,FlightData.q,FlightData.r,FlightData.Airspeed,FlightData.wn,FlightData.we]);

% Ensure time rows are unique.
[~,ind]=unique(FlightDataArray(:,1));
FlightDataArray=FlightDataArray(ind,:);

% Preprocess time data to specific times.
flightdata = double(FlightDataArray(FlightDataArray(:,1)>=0,1:end));

Visualize Standard Flight Instrument Data in MATLAB

To get a quick overview of the flight , use the animation interface introduced in the “Display Flight
Trajectory Data Using Flight Instruments and Flight Animation” (Aerospace Toolbox) example. The
helper function helperDroneInstruments creates an instrument animation interface.

helperDroneInstruments;

 Flight Instrument Gauge Visualization for a Drone

1-7

The Airspeed indicator dial indicates the speed of the drone. The Artificial Horizon indicator
reveals the attitude of the drone excluding yaw. The Altimeter and Climb Rate indicator reveal the
altitude as recorded within the barometer and the climb rate sensors respectively. The Turn
Coordinator indicates the yaw rate of the aircraft and sideslip. If the inclinometer skews towards left
or right, this denotes a slip or skid situation. In a coordinated turn, the sideslip should be zero.

Visualize Signals in Simulink

In Simulik, you can create custom visualizations of signals using intrument blocks to help diagnose
problems with a flight. For example, voltage and battery data in log files can help diagnose failures
due to inadequate power or voltage spikes. Extract this batter data below to visualize them.

% Extract battery data.
Battery = extract(plotter,data,"Battery");
% Extract voltage data from topic.
Voltage = timetable(Battery{1}.Time,Battery{1}.Voltage_1,...
 'VariableNames',{'Voltage_1'});
% Extract remaing battery capacity data from topic.
Capacity = timetable(Battery{1}.Time,Battery{1}.RemainingCapacity,...
 'VariableNames',{'RemainingCapacity'});

1 UAV Toolbox Examples

1-8

Open the 'dronegauge' model, which takes the loaded data and displays it on the different gauges
and the UAV animation figure.

open_system('dronegauges');

Run the model. The generated figure shows the trajectory of the UAV in real time and the gauges
show the current status of the flight.

sim('dronegauges');

 Flight Instrument Gauge Visualization for a Drone

1-9

1 UAV Toolbox Examples

1-10

Visualize Custom Flight Log
Configure the flightLogSignalMapping object to visualize data from a custom flight log.

Load Custom Flight Log

In this example, it is assumed that flight data is already parsed into MATLAB® and stored as a mat
file. This example focuses on configuring the flightLogSignalMapping object so that it could
properly handle the log data saved in the mat file and visualize them. The data,
customFlightData.mat, stores a struct that contains 3 fields. Fs is the sampling frequency of the
signals stored in the mat file. IMU and Trajectory are matrices containing actual flight information.
The trajectory and IMU data are based on a simulated flight that follows a projected rectangular path
on an XY-plane.

customData = load("customFlightData.mat");
logData = customData.logData

logData = struct with fields:
 IMU: [2785x9 double]
 Fs: 100
 Trajectory: [2785x10 double]

The IMU field in logData is an n-by-9 matrix, with the first 3 columns as accelerometer readings in
m/s2. The next 3 columns are gyroscope readings in rad/s, and the last 3 columns are magnetometer
readings in μT.

logData.IMU(1:5, :)

ans = 5×9

 0.8208 0.7968 10.7424 0.0862 0.0873 0.0862 327.6000 297.6000 283.8000
 0.8016 0.8160 10.7904 0.0883 0.0873 0.0862 327.6000 297.6000 283.8000
 0.7680 0.7680 10.7568 0.0862 0.0851 0.0851 327.6000 297.6000 283.8000
 0.8208 0.7536 10.7520 0.0873 0.0883 0.0819 327.6000 297.6000 283.8000
 0.7872 0.7728 10.7328 0.0873 0.0862 0.0830 327.6000 297.6000 283.8000

The Trajectory field in logData is an n-by-9 matrix, with the first 3 columns are XYZ NED
coordinates in m. The next 3 columns are velocity in XYZ NED direction in m/s, and the last 4
columns are quaternions describing the UAV rotation from the inertia NED frame to body frame. Each
row is a single point of the trajectory with all these parameters defined.

logData.Trajectory(1:5,:)

ans = 5×10

 0.0200 0 -4.0000 2.0000 0 -0.0036 1.0000 0 0 -0.0000
 0.0400 0 -4.0001 2.0000 0 -0.0072 1.0000 0 0 -0.0000
 0.0600 0 -4.0002 2.0000 0 -0.0108 1.0000 0 0 -0.0000
 0.0800 0 -4.0003 2.0000 0 -0.0143 1.0000 0 0 -0.0000
 0.1000 0 -4.0004 2.0000 0 -0.0179 1.0000 0 0 -0.0001

 Visualize Custom Flight Log

1-11

Visualize Custom Flight Log Using Pre-defined Signal Format and Plots

A flightLogSignalMapping object is created with no input argument since the custom log format
is not following a standard "ulog" or "tlog" definition.

customPlotter = flightLogSignalMapping;

The object has a predefined set of signals that you can map. By mapping these predefined signals,
you gain access to a set of predefined plots. Notice that a few signals has a "#" symbol suffix. This
means that you can optionally suffix these signal names with integers so that the flight log plotter can
handle multiple of signals of this kind, such as secondary IMU signals, barometer readings, etc. Call
info

% Predefined signals
info(customPlotter, "Signal")

ans=18×4 table
 SignalName IsMapped SignalFields FieldUnits
 _____________________ ________ __ ___

 "Accel#" false "AccelX, AccelY, AccelZ" "m/s^2, m/s^2, m/s^2"
 "Airspeed#" false "PressDiff, IndicatedAirSpeed, Temperature" "Pa, m/s, degreeC"
 "AttitudeEuler" false "Roll, Pitch, Yaw" "rad, rad, rad"
 "AttitudeRate" false "BodyRotationRateX, BodyRotationRateY, BodyRotationRateZ" "rad/s, rad/s, rad/s"
 "AttitudeTargetEuler" false "RollTarget, PitchTarget, YawTarget" "rad, rad, rad"
 "Barometer#" false "PressAbs, PressAltitude, Temperature" "Pa, m, degreeC"
 "Battery" false "Voltage_1, Voltage_2, Voltage_3, Voltage_4, Voltage_5, Voltage_6, Voltage_7, Voltage_8, Voltage_9, Voltage_10, Voltage_11, Voltage_12, Voltage_13, Voltage_14, Voltage_15, Voltage_16, RemainingCapacity" "v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, %"
 "GPS#" false "Latitude, Longitude, Altitude, GroundSpeed, CourseAngle, SatellitesVisible" "degree, degree, m, m/s, degree, N/A"
 "Gyro#" false "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"
 "LocalENU" false "X, Y, Z" "m, m, m"
 "LocalENUTarget" false "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalENUVel" false "VX, VY, VZ" "m/s, m/s, m/s"
 "LocalENUVelTarget" false "VXTarget, VYTarget, VZTarget" "m/s, m/s, m/s"
 "LocalNED" false "X, Y, Z" "m, m, m"
 "LocalNEDTarget" false "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalNEDVel" false "VX, VY, VZ" "m/s, m/s, m/s"
 ⋮

% Predefined plots
info(customPlotter,"Plot")

ans=10×4 table
 PlotName ReadyToPlot MissingSignals RequiredSignals
 _______________________ ___________ ____________________________________ ____________________________________

 "Attitude" false "AttitudeEuler, AttitudeRate, Gyro#" "AttitudeEuler, AttitudeRate, Gyro#"
 "AttitudeControl" false "AttitudeEuler, AttitudeTargetEuler" "AttitudeEuler, AttitudeTargetEuler"
 "Battery" false "Battery" "Battery"
 "Compass" false "AttitudeEuler, Mag#, GPS#" "AttitudeEuler, Mag#, GPS#"
 "GPS2D" false "GPS#" "GPS#"
 "Height" false "Barometer#, GPS#, LocalNED" "Barometer#, GPS#, LocalNED"
 "Speed" false "GPS#, Airspeed#" "GPS#, Airspeed#"
 "Trajectory" false "LocalNED, LocalNEDTarget" "LocalNED, LocalNEDTarget"
 "TrajectoryTracking" false "LocalNED, LocalNEDTarget" "LocalNED, LocalNEDTarget"
 "TrajectoryVelTracking" false "LocalNEDVel, LocalNEDVelTarget" "LocalNEDVel, LocalNEDVelTarget"

1 UAV Toolbox Examples

1-12

The flightLogSignalMapping object needs to know how data is stored in the flight log before it can
visualize the data. To associate signal names with function handles that access the relevant
information in the logData, you must map signals using mapSignal. Each signal is defined as a
timestamp vector and a signal value matrix.

For example, to map the Gyro# signal, define a timeAccess function handle based on the sensor
data sampling frequency. This function handle generates the timestamp vector for the signal values
using a global timestamp interval for the data.

timeAccess = @(x)seconds(1/x.Fs*(1:size(x.IMU)));

Next, check what fields must be defined for the Gyro# signal using info.

info(customPlotter,"Signal","Gyro#")

ans=1×4 table
 SignalName IsMapped SignalFields FieldUnits
 __________ ________ _____________________ _____________________

 "Gyro#" false "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"

The Gyro# signal needs three columns containing the gyroscope readings for the XYZ axes. Define
the gyroAccess function handle accordingly and map it with timeAccess using mapSignal.

gyroAccess = @(x)x.IMU(:,4:6);
mapSignal(customPlotter,"Gyro",timeAccess,gyroAccess);

Similarly, map other predefined signalsfor data that is present in the flight log. Define the value
function handles for the data. Map the signals using the same timeAccess timestamp vector
function.

% IMU data stores accelerometer and magnetometer data.
accelAccess = @(x)x.IMU(:,1:3);
magAccess = @(x)x.IMU(:,7:9)*1e-2;

% Flight trajectory in local NED coordinates
% XYZ coordinates
nedAccess = @(x)x.Trajectory(:, 1:3);
% XYZ celocities
nedVelAccess = @(x)x.Trajectory(:, 4:6);
% Roll Pitch Yaw rotations converted from a quaternion
attitudeAccess = @(x)flip(quat2eul(x.Trajectory(:, 7:10)),2);

% Configure flightLogSignalMapping for custom data
mapSignal(customPlotter, "Accel", timeAccess, accelAccess);
mapSignal(customPlotter, "Mag", timeAccess, magAccess);
mapSignal(customPlotter, "LocalNED", timeAccess, nedAccess);
mapSignal(customPlotter, "LocalNEDVel", timeAccess, nedVelAccess);
mapSignal(customPlotter, "AttitudeEuler", timeAccess, attitudeAccess);

Once all signals are mapped, customPlotter is ready to generate plots based on signal data stored
in the log. To visualize the flight log data, call show and specify logData. All the plots available
based on the mapped signals are shown in figures.

predefinedPlots = show(customPlotter,logData);

 Visualize Custom Flight Log

1-13

1 UAV Toolbox Examples

1-14

 Visualize Custom Flight Log

1-15

1 UAV Toolbox Examples

1-16

 Visualize Custom Flight Log

1-17

1 UAV Toolbox Examples

1-18

 Visualize Custom Flight Log

1-19

Visualize Custom Flight Log with Custom Plot

For mod details log analysis, define more signals and add more plots other than predefined plots
stored in flightLogSignalMapping. Specify a function handle that filters accelerations greater
than 1.

accelThreshold = @(x)(vecnorm(accelAccess(x)')>11)';
mapSignal(customPlotter, "HighAccel", timeAccess,accelThreshold, "AccelGreaterThan11", "N/A");

Call updatePlot to add custom plots. Specify the flight log plotter object and a name for the plot as
the first two argument. To specify a time series of data, use "Timeseries" as the third argument,
and then list the data.

updatePlot(customPlotter, "AnalyzeAccel","Timeseries",["HighAccel.AccelGreaterThan11", "LocalNEDVel.VX", "LocalNEDVel.VY", "LocalNEDVel.VZ"]);

Define a custom function handle for generating a figure handle (see function definition below). This
function generates a periodogram using fft and other functions on the acceleration data and plots
them. The function returns a function handle.

updatePlot(customPlotter, "plotFFTAccel",@(acc)plotFFTAccel(acc),"Accel");

Check that customPlotter now contains a new signal and two new plots using info.

info(customPlotter, "Signal")

ans=19×4 table
 SignalName IsMapped SignalFields FieldUnits
 _____________________ ________ __ ___

1 UAV Toolbox Examples

1-20

 "Accel" true "AccelX, AccelY, AccelZ" "m/s^2, m/s^2, m/s^2"
 "AttitudeEuler" true "Roll, Pitch, Yaw" "rad, rad, rad"
 "Gyro" true "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"
 "HighAccel" true "AccelGreaterThan11" "N/A"
 "LocalNED" true "X, Y, Z" "m, m, m"
 "LocalNEDVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 "Mag" true "MagX, MagY, MagZ" "Gs, Gs, Gs"
 "Airspeed#" false "PressDiff, IndicatedAirSpeed, Temperature" "Pa, m/s, degreeC"
 "AttitudeRate" false "BodyRotationRateX, BodyRotationRateY, BodyRotationRateZ" "rad/s, rad/s, rad/s"
 "AttitudeTargetEuler" false "RollTarget, PitchTarget, YawTarget" "rad, rad, rad"
 "Barometer#" false "PressAbs, PressAltitude, Temperature" "Pa, m, degreeC"
 "Battery" false "Voltage_1, Voltage_2, Voltage_3, Voltage_4, Voltage_5, Voltage_6, Voltage_7, Voltage_8, Voltage_9, Voltage_10, Voltage_11, Voltage_12, Voltage_13, Voltage_14, Voltage_15, Voltage_16, RemainingCapacity" "v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, %"
 "GPS#" false "Latitude, Longitude, Altitude, GroundSpeed, CourseAngle, SatellitesVisible" "degree, degree, m, m/s, degree, N/A"
 "LocalENU" false "X, Y, Z" "m, m, m"
 "LocalENUTarget" false "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalENUVel" false "VX, VY, VZ" "m/s, m/s, m/s"
 ⋮

info(customPlotter, "Plot")

ans=12×4 table
 PlotName ReadyToPlot MissingSignals RequiredSignals
 _______________________ ___________ _____________________ ____________________________________

 "AnalyzeAccel" true "" "HighAccel, LocalNEDVel"
 "Attitude" true "AttitudeRate" "AttitudeEuler, AttitudeRate, Gyro#"
 "AttitudeControl" true "AttitudeTargetEuler" "AttitudeEuler, AttitudeTargetEuler"
 "Compass" true "GPS#" "AttitudeEuler, Mag#, GPS#"
 "Height" true "Barometer#, GPS#" "Barometer#, GPS#, LocalNED"
 "Trajectory" true "LocalNEDTarget" "LocalNED, LocalNEDTarget"
 "TrajectoryTracking" true "LocalNEDTarget" "LocalNED, LocalNEDTarget"
 "TrajectoryVelTracking" true "LocalNEDVelTarget" "LocalNEDVel, LocalNEDVelTarget"
 "plotFFTAccel" true "" "Accel"
 "Battery" false "Battery" "Battery"
 "GPS2D" false "GPS#" "GPS#"
 "Speed" false "GPS#, Airspeed#" "GPS#, Airspeed#"

Specify which plot names you want to plot. Call show using "PlotsToShow" to visualize the analysis
of the acceleration data.

accelAnalysisProfile = ["AnalyzeAccel", "plotFFTAccel"];
accelAnalysisPlots = show(customPlotter, logData, "PlotsToShow", accelAnalysisProfile);

 Visualize Custom Flight Log

1-21

1 UAV Toolbox Examples

1-22

This example has shown how to use the flightLogSignalMapping object to look at predefined signals
and plots, as well as customize your own plots for flight log analysis.

Analyze Acceleration Data Function Definition

function h = plotFFTAccel(acc)
 h = figure("Name", "AccelFFT");
 ax = newplot(h);
 v = acc.Values{1};
 Fs = v.Properties.SampleRate;
 N = floor(length(v.AccelX)/2)*2;
 hold(ax, "on");
 for idx = 1:3
 x = v{1:N, idx};
 xdft = fft(x);
 xdft = xdft(1:N/2+1);
 psdx = (1/(Fs*N)) * abs(xdft).^2;
 psdx(2:end-1) = 2*psdx(2:end-1);
 freq = 0:Fs/length(x):Fs/2;
 plot(ax, freq, 10*log10(psdx));
 end
 hold(ax, "off");
 title("Periodogram Using FFT");
 xlabel("f (Hz)");
 ylabel("Power/Frequency (dB/Hz)");

 Visualize Custom Flight Log

1-23

 legend("AccelX", "AccelY", "AccelZ");
end

1 UAV Toolbox Examples

1-24

Tuning Waypoint Follower for Fixed-Wing UAV
This example designs a waypoint following controller for a fixed-wing unmanned aerial vehicle (UAV)
using the Guidance Model and Waypoint Follower blocks.

The example iterates through different control configurations and demonstrates UAV flight behavior
by simulating a kinematic model for fixed-wing UAV.

Guidance Model Configuration

The fixed-wing guidance model approximates the kinematic behavior of a closed-loop system
consisting of the fixed-wing aerodynamics and an autopilot. This guidance model is suitable for
simulating small UAV flights at a low-fidelity near the stable flight condition of the UAV. We can use
the guidance model to simulate the flight status of the fixed-wing UAV guided by a waypoint follower.

The following Simulink® model can be used to observe the fixed-wing guidance model response to
step control inputs.

open_system('uavStepResponse');

Integration with Waypoint Follower

The fixedWingPathFollowing model integrates the waypoint follower with the fixed-wing
guidance model. This model demonstrates how to extract necessary information from the guidance
model output bus signal and feed them into the waypoint follower. The model assembles the control
and environment inputs for the guidance model block.

open_system('fixedWingPathFollowing');

Waypoint Follower Configuration

The waypoint follower controller includes two parts, a UAV Waypoint Follower block and a fixed-
wing UAV heading controller.

 Tuning Waypoint Follower for Fixed-Wing UAV

1-25

The UAV Waypoint Follower block computes a desired heading for the UAV based on the current pose,
lookahead distance, and a given set of waypoints. Flying along these heading directions, the UAV
visits each waypoint (within the specified transition radius) in the list.

The Heading Control block is a proportional controller that regulates the UAV heading angle by
controlling the roll angle under the coordinated-flight condition.

The UAV Animation block visualizes the UAV flight path and attitude. For fixed-wing simulation in a
windless condition, the body pitch angle is the sum of the flight path angle and the attack angle. For
small fixed-wing UAV, the attack angle is usually controlled by the autopilot and remains relatively
small. For visualization purposes, we approximate the pitch angle with the flight path angle. In a
windless, zero side-slip condition, the body yaw angle is the same as heading angle.

Tune Waypoint Following Controller through Simulation

Simulate the model. Use the slider to adjust the controller waypoint following.

sim("fixedWingPathFollowing")

The next figures shows the flight behavior with a small lookahead distance (5) and a fast heading
control (3.9). Notice the UAV follows a very curvy path between the waypoints.

1 UAV Toolbox Examples

1-26

The next figure shows the flight behavior with a large lookahead distance and slow heading control.

 Tuning Waypoint Follower for Fixed-Wing UAV

1-27

Summary

This example tunes UAV flight controller by manually iterating through multiple sets of control
parameters. This process can be extended to automatically sweep large set of control parameters to
obtain optimal control configurations for customized navigation controllers.

Once the flight behavior satisfies design specification, consider testing the chosen control parameters
with high-fidelity models built with Aerospace Blockset or with external flight simulators.

% close Simulink models
close_system("uavStepResponse");
close_system("fixedWingPathFollowing");

1 UAV Toolbox Examples

1-28

Approximate High-Fidelity UAV model with UAV Guidance
Model block

Simulation models often need different levels of fidelity during different development stages. During
the rapid-prototyping stage, we would like to quickly experiment and tune parameters to test
different autonomous algorithms. During the production development stage, we would like to validate
our algorithms against models of increasing fidelities. In this example, we demonstrate a method to
approximate a high-fidelity model with the Guidance Model block and use it to prototype and tune a
waypoint following navigation system. See “Tuning Waypoint Follower for Fixed-Wing UAV” on page
1-25. The same navigation system is tested against a high-fidelity model to verify its performance.

The example model uses a high-fidelity unmanned aerial vehicle (UAV) model consisting of a plant
model and a mid-level built-in autopilot. This model contains close to a thousand blocks and it is quite
complicated to work with. As a first step in the development process, we created a variant system
that can switch between this high-fidelity model and the UAV Guidance Model block. The high-fidelity
model is extracted from a File Exchange entry, Simulink Drone Reference Application.

UAV model of different fidelity

uavModel = 'FixedWingModel.slx';
open_system(uavModel);

You can switch between the low and high-fidelity models by changing a MATLAB® variable value
stored in the data dictionary associated with this model.

plantDataDictionary = Simulink.data.dictionary.open('pathFollowingData.sldd');
plantDataSet = getSection(plantDataDictionary,'Design Data');

% Switch to high-fidelity model
assignin(plantDataSet,'useHighFidelity',1);

% Switch to low-fidelity model
assignin(plantDataSet,'useHighFidelity',0);

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-29

https://www.mathworks.com/matlabcentral/fileexchange/67625-simulink-drone-reference-application

Approximate high-fidelity fixed-wing model with low-fidelity guidance model

To approximate the high-fidelity model with the UAV Guidance Model block, create step control
signals to feed into the model and observe the step response to RollAngle, Height, and AirSpeed
commands.

stepModel = 'stepResponse';
open_system(stepModel)

First, command a change in roll angle.

controlBlock = get_param('stepResponse/Step Control Input','Object');
controlBlock.StepControl = 'RollAngle Step Control';

assignin(plantDataSet,'useHighFidelity',1);

sim(stepModel);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: PlantModel
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
==
PlantModel Code generated and compiled PlantModel_msf.mexw64 does not exist.
FixedWingModel Code generated and compiled FixedWingModel_msf.mexw64 does not exist.

2 of 2 models built (0 models already up to date)
Build duration: 0h 2m 51.221s

1 UAV Toolbox Examples

1-30

highFidelityRollAngle = RollAngle.Data(:);
highFidelityTime = RollAngle.Time;

figure()
plot(highFidelityTime, highFidelityRollAngle,'--r');
title('Roll Angle Step Response')

Zooming into the simulation result above, you see the characteristics of the roll angle controller built
into the high-fidelity model. The settling time for the roll angle is close to 2.5 seconds.

xlim([75 80])
ylim([-0.1 0.548])

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-31

For a second-order PD controller, to achieve this settling time with a critically damped system, the
following gains should be used to configure the UAV Guidance Model block inside the low-fidelity
variant of the UAV model. For this example, the UAV Guidance Model block is simulated using code
generation to increase speed for multiple runs. See the block parameters.

zeta = 1.0; % critically damped
ts = 2.5; % 2 percent settling time
wn = 5.8335/(ts*zeta);
newRollPD = [wn^2 2*zeta*wn];

Set the new gains and simulate the step response for the low-fidelity model. Compare it to the
original response.

load_system(uavModel)
set_param('FixedWingModel/FixedWingModel/LowFidelity/Fixed Wing UAV Guidance Model',...
 'PDRollFixedWing',strcat('[',num2str(newRollPD),']'))
save_system(uavModel)

assignin(plantDataSet, 'useHighFidelity', 0);

sim(stepModel);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

1 UAV Toolbox Examples

1-32

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Model or library FixedWingModel has changed.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 38.007s

lowFidelityRollAngle = RollAngle.Data(:);
lowFidelityTime = RollAngle.Time;

hold on;
plot(lowFidelityTime, lowFidelityRollAngle,'-b');
legend('High-Fidelity Response', 'Low-Fidelity Response', 'Location','southeast');

The low-fidelity model achieves a similar step response. Similarly, we can tune the other two control
channels: Height and AirSpeed. More sophisticated methods can be used here to optimize the
control gains instead of visual inspection of the control response. Consider using System
Identification Toolbox® to perform further analysis of the high-fidelity UAV model behavior.

controlBlock.StepControl = 'AirSpeed Step Control';
assignin(plantDataSet, 'useHighFidelity', 0);

sim(stepModel);

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-33

Starting serial model reference simulation build
Model reference simulation target for FixedWingModel is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 5.424s

lowFidelityAirSpeed = AirSpeed.Data(:);
lowFidelityTime = AirSpeed.Time;

assignin(plantDataSet, 'useHighFidelity', 1);

sim(stepModel);

Starting serial model reference simulation build
Model reference simulation target for PlantModel is up to date.
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 0 value has changed from true to false.

1 of 2 models built (1 models already up to date)
Build duration: 0h 1m 3.131s

highFidelityAirSpeed = AirSpeed.Data(:);
highFidelityTime = AirSpeed.Time;

figure()
plot(lowFidelityTime, lowFidelityAirSpeed,'-b');
hold on;
plot(highFidelityTime, highFidelityAirSpeed,'--r');
legend('Low-Fidelity Response', 'High-Fidelity Response', 'Location','southeast');
title('Air Speed Step Response')
xlim([70 80])
ylim([17.5 19.2])

1 UAV Toolbox Examples

1-34

controlBlock.StepControl = 'Height Step Control';
assignin(plantDataSet, 'useHighFidelity', 0);

sim(stepModel);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 1 value has changed from true to false.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 38.647s

lowFidelityHeight = Height.Data(:);
lowFidelityTime = Height.Time;

assignin(plantDataSet, 'useHighFidelity', 1);

sim(stepModel);

Starting serial model reference simulation build
Model reference simulation target for PlantModel is up to date.

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-35

Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 0 value has changed from true to false.

1 of 2 models built (1 models already up to date)
Build duration: 0h 0m 56.413s

highFidelityHeight = Height.Data(:);
highFidelityTime = Height.Time;

figure()
plot(lowFidelityTime, lowFidelityHeight,'-b');
hold on;
plot(highFidelityTime, highFidelityHeight,'--r');
legend('Low-Fidelity Response', 'High-Fidelity Response', 'Location','southeast');
title('Height Step Response')
xlim([70 150])
ylim([49 56])

1 UAV Toolbox Examples

1-36

Test navigation algorithm with low-fidelity model

Now that we have approximated the high-fidelity model with the UAV Guidance Model block, we
can try to replace it with the UAV Guidance Model block in the “Tuning Waypoint Follower for Fixed-
Wing UAV” on page 1-25 example. Test the effect of the lookahead distance and heading control gains
against these models of different fidelities.

navigationModel = 'pathFollowing';
open_system(navigationModel);

assignin(plantDataSet,'useHighFidelity',0);

sim(navigationModel);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 1 value has changed from true to false.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 30.997s

figure
visualizeSimStates(simStates);

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-37

Validate with high-fidelity model

assignin(plantDataSet,'useHighFidelity',1);

sim(navigationModel);

Starting serial model reference simulation build
Model reference simulation target for PlantModel is up to date.
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 0 value has changed from true to false.

1 of 2 models built (1 models already up to date)
Build duration: 0h 0m 52.308s

figure
visualizeSimStates(simStates);

1 UAV Toolbox Examples

1-38

Conclusion

This example shows how we can approximate a high-fidelity model with a low-fidelity abstraction of a
fixed-wing UAV. The opposite approach can be used as well to help with choosing autopilot control
gains for the high-fidelity model. You can first decide acceptable characteristics of an autopilot
control response by simulating a low-fidelity model in different test senarios and then tune the high-
fidelity model autopilot accordingly.

discardChanges(plantDataDictionary);
clear plantDataSet
clear plantDataDictionary
close_system(uavModel, 0);
close_system(stepModel, 0);
close_system(navigationModel, 0);

See Also
UAV Guidance Model | fixedwing | multirotor

More About
• “Tuning Waypoint Follower for Fixed-Wing UAV” on page 1-25
• “Simulink Bus Signals” (Simulink)

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-39

Motion Planning with RRT for Fixed-Wing UAV
This example demonstrates motion planning of a fixed-wing unmanned aerial vehicle (UAV) using the
rapidly exploring random tree (RRT) algorithm given a start and goal pose on a 3-D map. A fixed-wing
UAV is nonholonomic in nature, and must obey aerodynamic constraints like maximum roll angle,
flight path angle, and airspeed when moving between waypoints.

In this example you will set up a 3-D map, provide the start pose and goal pose, plan a path with RRT
using 3-D Dubins motion primitives, smooth the obtained path, and simulate the flight of the UAV.

% Set RNG seed for repeatable result
rng(1,"twister")

Load Map

Load the 3-D occupancy map uavMapCityBlock.mat, which contains a set of pregenerated
obstacles, into the workspace. Inflate the map uniformly by 1 m to increase path safety and account
for the wingspan of the fixed-wing UAV. The occupancy map is in an ENU (East-North-Up) frame.

mapData = load("uavMapCityBlock.mat","omap");
omap = mapData.omap;
% Consider unknown spaces to be unoccupied
omap.FreeThreshold = omap.OccupiedThreshold;
inflate(omap,1)
figure("Name","CityBlock")
show(omap)

1 UAV Toolbox Examples

1-40

Set Start Pose and Goal Pose

Using the map for reference, select an unoccupied start pose and goal pose.

startPose = [12 22 25 pi/2];
goalPose = [150 180 35 pi/2];
figure("Name","StartAndGoal")
hMap = show(omap);
hold on
scatter3(hMap,startPose(1),startPose(2),startPose(3),30,"red","filled")
scatter3(hMap,goalPose(1),goalPose(2),goalPose(3),30,"green","filled")
hold off
view([-31 63])

Plan a Path with RRT Using 3-D Dubins Motion Primitives

RRT is a tree-based motion planner that builds a search tree incrementally from random samples of a
given state space. The tree eventually spans the search space and connects the start state and the
goal state. Connect the two states using a uavDubinsConnection object that satisfies aerodynamic
constraints. Use the validatorOccupancyMap3D object for collision checking between the fixed-
wing UAV and the environment.

Define the State Space Object

This example provides a predefined state space, ExampleHelperUavStateSpace, for path planning.
The state space is defined as [x y z headingAngle], where [x y z] specifies the position of the
UAV and headingAngle specifies the heading angle in radians. The example uses a

 Motion Planning with RRT for Fixed-Wing UAV

1-41

uavDubinsConnection object as the kinematic model for the UAV, which is constrained by
maximum roll angle, airspeed, and flight path angle. Create the state space object by specifying the
maximum roll angle, airspeed, and flight path angle limits properties of the UAV as name-value pairs.
Use the "Bounds" name-value pair argument to specify the position and orientation boundaries of
the UAV as a 4-by-2 matrix, where the first three rows represent the x-, y-, and z-axis boundaries
inside the 3-D occupancy map and the last row represents the heading angle in the range [-pi, pi]
radians.

ss = ExampleHelperUAVStateSpace("MaxRollAngle",pi/6,...
 "AirSpeed",6,...
 "FlightPathAngleLimit",[-0.1 0.1],...
 "Bounds",[-20 220; -20 220; 10 100; -pi pi]);

Set the threshold bounds of the workspace based on the target goal pose. This threshold dictates how
large the target workspace goal region around the goal pose is, which is used for bias sampling of the
workspace goal region approach.

threshold = [(goalPose-0.5)' (goalPose+0.5)'; -pi pi];

Use the setWorkspaceGoalRegion function to update the goal pose and the region around it.

setWorkspaceGoalRegion(ss,goalPose,threshold)

Define the State Validator Object

The validatorOccupancyMap3D object determines that a state is invalid if the xyz-location is
occupied on the map. A motion between two states is valid only if all intermediate states are valid,
which means the UAV does not pass through any occupied location on the map. Create a
validatorOccupancyMap3D object by specifying the state space object and the inflated map. Then
set the validation distance, in meters, for interpolating between states.

sv = validatorOccupancyMap3D(ss,"Map",omap);
sv.ValidationDistance = 0.1;

Set Up the RRT Path Planner

Create a plannerRRT object by specifying the state space and state validator as inputs. Set the
MaxConnectionDistance, GoalBias, and MaxIterations properties of the planner object, and
then specify a custom goal function. This goal function determines that a path has reached the goal if
the Euclidean distance to the target is below a threshold of 5 m.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 50;
planner.GoalBias = 0.10;
planner.MaxIterations = 400;
planner.GoalReachedFcn = @(~,x,y)(norm(x(1:3)-y(1:3)) < 5);

Execute Path Planning

Perform RRT-based path planning in 3-D space. The planner finds a path that is collision-free and
suitable for fixed-wing flight.

[pthObj,solnInfo] = plan(planner,startPose,goalPose);

Simulate a UAV Following the Planned Path

Visualize the planned path. Interpolate the planned path based on the UAV Dubins connections. Plot
the interpolated states as a green line.

1 UAV Toolbox Examples

1-42

Simulate the UAV flight using the provided helper function, exampleHelperSimulateUAV, which
requires the waypoints, airspeed, and time to reach the goal (based on airspeed and path length). The
helper function uses the fixedwing guidance model to simulate the UAV behavior based on control
inputs generated from the waypoints. Plot the simulated states as a red line.

Notice that the simulated UAV flight deviates slightly from the planned path because of small control
tracking errors. Also, the 3-D Dubins path assumes instantaneous changes in the UAV roll angle, but
the actual dynamics have a slower response to roll commands. One way to compensate for this lag is
to plan paths with more conservative aerodynamic constraints.

if (solnInfo.IsPathFound)
 figure("Name","OriginalPath")
 % Visualize the 3-D map
 show(omap)
 hold on
 scatter3(startPose(1),startPose(2),startPose(3),30,"red","filled")
 scatter3(goalPose(1),goalPose(2),goalPose(3),30,"green","filled")

 interpolatedPathObj = copy(pthObj);
 interpolate(interpolatedPathObj,1000)

 % Plot the interpolated path based on UAV Dubins connections
 hReference = plot3(interpolatedPathObj.States(:,1), ...
 interpolatedPathObj.States(:,2), ...
 interpolatedPathObj.States(:,3), ...
 "LineWidth",2,"Color","g");

 % Plot simulated UAV trajectory based on fixed-wing guidance model
 % Compute total time of flight and add a buffer
 timeToReachGoal = 1.05*pathLength(pthObj)/ss.AirSpeed;
 waypoints = interpolatedPathObj.States;
 [xENU,yENU,zENU] = exampleHelperSimulateUAV(waypoints,ss.AirSpeed,timeToReachGoal);
 hSimulated = plot3(xENU,yENU,zENU,"LineWidth",2,"Color","r");
 legend([hReference,hSimulated],"Reference","Simulated","Location","best")
 hold off
 view([-31 63])
end

 Motion Planning with RRT for Fixed-Wing UAV

1-43

Smooth Dubins Path and Simulate UAV Trajectory

The original planned path makes some unnecessary turns while navigating towards the goal. Simplify
the 3-D Dubins path by using the path smoothing algorithm provided with the example,
exampleHelperUAVPathSmoothing. This function removes intermediate 3-D Dubins poses based
on an iterative strategy. For more information on the smoothing strategy, see [1 on page 1-0]. The
smoothing function connects non-sequential 3-D Dubins poses with each other as long as doing so
does not result in a collision. The smooth paths generated by this process improve tracking
characteristics for the fixed-wing simulation model. Simulate the fixed-wing UAV model with these
new, smoothed waypoints.

if (solnInfo.IsPathFound)
 smoothWaypointsObj = exampleHelperUAVPathSmoothing(ss,sv,pthObj);

 figure("Name","SmoothedPath")
 % Plot the 3-D map
 show(omap)
 hold on
 scatter3(startPose(1),startPose(2),startPose(3),30,"red","filled")
 scatter3(goalPose(1),goalPose(2),goalPose(3),30,"green","filled")

 interpolatedSmoothWaypoints = copy(smoothWaypointsObj);
 interpolate(interpolatedSmoothWaypoints,1000)

 % Plot smoothed path based on UAV Dubins connections
 hReference = plot3(interpolatedSmoothWaypoints.States(:,1), ...
 interpolatedSmoothWaypoints.States(:,2), ...

1 UAV Toolbox Examples

1-44

 interpolatedSmoothWaypoints.States(:,3), ...
 "LineWidth",2,"Color","g");

 % Plot simulated flight path based on fixed-wing guidance model
 waypoints = interpolatedSmoothWaypoints.States;
 timeToReachGoal = 1.05*pathLength(smoothWaypointsObj)/ss.AirSpeed;
 [xENU,yENU,zENU] = exampleHelperSimulateUAV(waypoints,ss.AirSpeed,timeToReachGoal);
 hSimulated = plot3(xENU,yENU,zENU,"LineWidth",2,"Color","r");

 legend([hReference,hSimulated],"SmoothedReference","Simulated","Location","best")
 hold off
 view([-31 63])
end

The smoothed path is much shorter and shows improved tracking overall.

References

[1] Beard, Randal W., and Timothy W. McLain. Small Unmanned Aircraft: Theory and Practice.
Princeton, N.J: Princeton University Press, 2012.

[2] Hornung, Armin, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees.” Autonomous Robots
34, no. 3 (April 2013): 189–206. https://doi.org/10.1007/s10514-012-9321-0.

 Motion Planning with RRT for Fixed-Wing UAV

1-45

https://doi.org/10.1007/s10514-012-9321-0

UAV Package Delivery
This example shows through incremental design iterations how to implement a small multicopter
simulation to takeoff, fly, and land at a different location in a city environment.

Open the Project

To get started, launch the project from the command line.

prj = openProject('uavPackageDelivery.prj');

Model Architecture and Conventions

The top model consists of the following subsystems and model references:

1 Ground Control Station: Used to control and monitor the aircraft while in-flight.
2 External Sensors - Lidar & Camera: Used to connect to previously-designed scenario or a

Photorealistic simulation environment. These produce Lidar readings from the environment as
the aircraft flies through it.

3 On Board Computer: Used to implement algorithms meant to run in an on-board computer
independent from the Autopilot

4 Multirotor: Includes a low-fidelity and mid-fidelity multicopter mode, a flight controller
including its guidance logic.

The model's design data is contained in a Simulink data dictionary in the data folder
(uavPackageDeliveryDataDict.sldd). Additionally, the model uses “Variant Subsystems”
(Simulink) to manage different configurations of the model. Variables placed in the base workspace
configure these variants without the need to modifiy the data dictionary.

Following Example Steps

Use the Project Shortcuts to step through the example. Each shortcut sets up the required variables
for the project.

1 UAV Toolbox Examples

1-46

1. Getting Started

Click the Getting Started project shortcut, which sets up the model for a four-waypoint mission
using a low-fidelity multirotor plant model. Run the uavPackageDelivery model, which shows the
multirotor takeoff, fly, and land in a 3-D plot.

The model uses of the UAV Path Manager block to determine which is the active waypoint
throughout the flight. The active waypoint is passed into the Guidance Mode Selector Stateflow™
chart to generate the necessary inner loop control commands.

 UAV Package Delivery

1-47

2. Connecting to a GCS

Once you are able to fly a basic mission, you are ready to integrate your simulation with a Ground
Station Software so you can better control the aircraft's mission. For this, you need to download and
install QGroundControl Ground Control Station software.

The model uses the UAV Toolbox™ mavlinkio to establish a connection between Simulink and
QGroundControl. The connection is implemented as a MATLAB System Block located in
uavPackageDelivery/Ground Control Station/Get Flight Mission/QGC/MAVLink
Interface.

To test the connectivity between Simulink and QGroundControl follow these steps:

1 Click the Connecting to a GCS project shortcut
2 Launch QGroundControl
3 In QGroundControl, load the mission plan named shortMission.plan located in /utilities/

qgc.
4 Run the simulation.
5 When QGroundControl indicates that it is connected to the system, upload the mission.

Once the aircraft takes off, you should see the UAV fly its mission as sent by QGC as shown below.

1 UAV Toolbox Examples

1-48

https://qgroundcontrol.com/

You can modify the mission by adding waypoints or moving those that are already in the mission.
Upload the mission and the aircraft should respond to these changes.

3. Setting a Cuboid Scenario

Now that aircraft's model can be flow from a ground control station, consider the environment the
aircraft flies in. For this example, a few city blocks are modelled in a cuboid scenario using the
uavScenario object. The scenario is based on the city block shown in the left figure below.

 UAV Package Delivery

1-49

To safely fly the aircraft in this type of scenario, you need a sensor that provides information about
the environment such as a lidar sensor to the model. This example uses a
uavLidarPointCloudGenerator object added to the UAV scenario with a uavSensor object. The
lidar sensor model generates readings based on the pose of the sensor and the obstacles in the
environment.

Click the Setting a Cuboid Scenario shortcut and Run the model. As the model runs, a lidar point
cloud image is displayed as the aircraft flies through the cuboid environment:

1 UAV Toolbox Examples

1-50

4. Obstacle Avoidance

To avoid obstacles in the environment, the model must use the available sensor data as the UAV flies
the mission in the environment. To modify the model configuration, click the Obstacle Avoidance
shortcut. A scope appears that shows the closest point to a buidling in the cuboid environment.

Run the model. As the model runs, the aircraft attempts to fly in a straigth path between buildings to
a drop site and avoids obstacles along the way. Notice the change in distance to obstacles over time.

 UAV Package Delivery

1-51

5. Photorealistic Simulation

Up to this point, the environment has been a simple cuboid scenario. To increase the fidelity of the
environment, click the Photorealistic Simulation shortcut, which places the aircraft in a more
realistic world to fly through. The PhotorealisticQuadrotor variant located at uavPackageDelivery/
photorealisticSimulationEngi/SimulationEnvironmentVariant becomes active. This
variant contains the necessary blocks to configure the simulation environment and the sensors
mounted on the aircraft:

Run the model. The aircraft is setup to fly the same mission from steps 1 and 2. Notice as the aircraft
flies the mission the lidar point clouds update and an image from the front-facing camera is shown.

1 UAV Toolbox Examples

1-52

6. Fly Full Mission in a Photorealistic Simulation Environment

Next, click the Fly full mission shortcut, which sets up the connectivity to QGroundControl from
step 2 for uploading the mission inside the photorealistic environment. Follow these steps to run the
simulation:

1 Launch QGroundControl.
2 In QGroundControl, load the mission plan named shortMission.plan located in /utilities/

qgc.
3 Run the Simulation.
4 When QGroundControl indicates that it is connected to a system, upload the mission.

As the aircraft starts to fly, you can modify the mission in QGroundControl by adding waypoints or
moving those that are already in the mission. Upload the mission and the aircraft should respond to
these changes. Throughout the flight you'll see the aircraft flying in the scenario.

 UAV Package Delivery

1-53

7. Flying Obstacle Avoidance in a Photorealistic Simulation Environment

Next, the goal is to fly a mission by specifying a takeoff and landing point in QGroundControl and
using the obstacle avoidance to navigate around the obstacles along the path. Click the Fly full
Obstacle Avoidance shortcut and follow these steps to run the simulation:

1 Launch QGroundControl.
2 In QGroundControl, load the mission plan named oaMission.plan located in /utilities/

qgc.
3 Run the Simulation.
4 When QGroundControl indicates that it is connected to a system, upload the mission.

Throughout the flight, watch the aircraft try to follow the commanded path in QGroundControl, while
at the same time attempting to avoid colliding with the buildings in the environment.

1 UAV Toolbox Examples

1-54

At some point during the flight, you will see the UAV pass through a narrow pass between two
buildings.

 UAV Package Delivery

1-55

8. Adding a 6DOF Plant Model for Higher-Fidelity Simulation

As a final step, click the Adding a High-fidelity Plan shortcut, which activates the high-fidelity
variant of the UAV model located at uavPackageDelivery/MultirotorModel/Inner Loop and
Plant Model/High-FidelityModel. This variant contains an inner-loop controller and a high-
fidelity plant model

Run the model. There are minor changes in behavior due to the high-fidelity model, but the UAV flies
the same mission.

When you are done exploring the models, close the project file.

close(prj);

1 UAV Toolbox Examples

1-56

UAV Scenario Tutorial
Create a scenario to simulate unmanned aerial vechicle (UAV) flights between a set of buildings. The
example demonstates updating the UAV pose in open-loop simulations. Use the UAV scenario to
visualize the UAV flight and generate simulated point cloud sensor readings.

Introduction

To test autonomous algorithms, a UAV scenario enables you to generate test cases and generate
sensor data from the environment. You can specify obstacles in the workspace, provide trajectories of
UAVs in global coordinates, and convert data between coordinate frames. The UAV scenario enables
you to visualize this information in the reference frame of the environment.

Create Scenario with Polygon Building Meshes

A uavScenario object is model consisting of a set of static obstacles and movable objects called
platforms. Use uavPlatform objects to model fixed-wing UAVs, multirotors, and other objects within
the scenario. This example builds a scenario consisting of a ground plane and 11 buildings as by
extruded polygons. The polygon data for the buildings is loaded and used to add polygon meshes.

% Create the UAV scenario.
scene = uavScenario("UpdateRate",2,"ReferenceLocation",[75 -46 0]);

% Add a ground plane.
color.Gray = 0.651*ones(1,3);
color.Green = [0.3922 0.8314 0.0745];
color.Red = [1 0 0];
addMesh(scene,"polygon",{[-250 -150; 200 -150; 200 180; -250 180],[-4 0]},color.Gray)

% Load building polygons.
load("buildingData.mat");

% Add sets of polygons as extruded meshes with varying heights from 10-30.
addMesh(scene,"polygon",{buildingData{1}(1:4,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{2}(2:5,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{3}(2:10,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{4}(2:9,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{5}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{6}(1:end-1,:),[0 15]},color.Green)
addMesh(scene,"polygon",{buildingData{7}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{8}(2:end-1,:),[0 10]},color.Green)
addMesh(scene,"polygon",{buildingData{9}(1:end-1,:),[0 15]},color.Green)
addMesh(scene,"polygon",{buildingData{10}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{11}(1:end-2,:),[0 30]},color.Green)

% Show the scenario.
show3D(scene);
xlim([-250 200])
ylim([-150 180])
zlim([0 50])

 UAV Scenario Tutorial

1-57

Define UAV Platform and Mount Sensor

You can define a uavPlatform in the scenario as a carrier of your sensor models and drive them
through the scenario to collect simulated sensor data. You can associate the platform with various
meshes, such as fixedwing, quadrotor, and cuboid meshes. You can define a custom mesh
defined ones represented by vertices and faces. Specify the reference frame for describing the motion
of your platform.

Load flight data into the workspace and create a quadrotor platform using an NED reference frame.
Specify the initial position and orientation based on loaded flight log data. The configuration of the
UAV body frame orients the x-axis as forward-positive, the y-axis as right-positive, and the z-axis
downward-positive.

load("flightData.mat")

% Set up platform
plat = uavPlatform("UAV",scene,"ReferenceFrame","NED", ...
 "InitialPosition",position(:,:,1),"InitialOrientation",eul2quat(orientation(:,:,1)));

% Set up platform mesh. Add a rotation to orient the mesh to the UAV body frame.
updateMesh(plat,"quadrotor",{10},color.Red,[0 0 0],eul2quat([0 0 pi]))

You can choose to mount different sensors, such as the insSensor, gpsSensor, or
uavLidarPointCloudGenerator System objects to your UAV. Mount a lidar point cloud generator
and a uavSensor object that contains the lidar sensor model. Specify a mounting location of the
sensor that is relative to the UAV body frame.

1 UAV Toolbox Examples

1-58

lidarmodel = uavLidarPointCloudGenerator("AzimuthResolution",0.3324099,...
 "ElevationLimits",[-20 20],"ElevationResolution",1.25,...
 "MaxRange",90,"UpdateRate",2,"HasOrganizedOutput",true);

lidar = uavSensor("Lidar",plat,lidarmodel,"MountingLocation",[0,0,-1]);

Fly the UAV Platform Along Pre-defined Trajectory and Collect Point Cloud Sensor Readings

Move the UAV along a pre-defined trajectory, and collect the lidar sensor readings along the way. This
data could be used to test lidar-based mapping and localization algorithms.

Preallocate the traj and scatterPlot line plots and then specify the plot-specific data sources.
During the simulation of the uavScenario, use the provided plotFrames output from the scene as
the parent axes to visualize your sensor data in the correct coordinate frames.

% Visualize the scene
[ax,plotFrames] = show3D(scene);

% Update plot view for better visibility.
xlim([-250 200])
ylim([-150 180])
zlim([0 50])
view([-110 30])
axis equal
hold on

% Create a line plot for the trajectory.
traj = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
traj.XDataSource = "position(:,1,1:idx+1)";
traj.YDataSource = "position(:,2,1:idx+1)";
traj.ZDataSource = "position(:,3,1:idx+1)";

% Create a scatter plot for the point cloud.
colormap("jet")
pt = pointCloud(nan(1,1,3));
scatterplot = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],...
 "Parent",plotFrames.UAV.Lidar);
scatterplot.XDataSource = "reshape(pt.Location(:,:,1),[],1)";
scatterplot.YDataSource = "reshape(pt.Location(:,:,2),[],1)";
scatterplot.ZDataSource = "reshape(pt.Location(:,:,3),[],1)";
scatterplot.CDataSource = "reshape(pt.Location(:,:,3),[],1) - min(reshape(pt.Location(:,:,3),[],1))";

% Start Simulation
setup(scene)
for idx = 0:size(position, 3)-1
 [isupdated,lidarSampleTime, pt] = read(lidar);
 if isupdated
 % Use fast update to move platform visualization frames.
 show3D(scene,"Time",lidarSampleTime,"FastUpdate",true,"Parent",ax);
 % Refresh all plot data and visualize.
 refreshdata
 drawnow limitrate
 end
 % Advance scene simulation time and move platform.
 advance(scene);
 move(plat,[position(:,:,idx+1),zeros(1,6),eul2quat(orientation(:,:,idx+1)),zeros(1,3)])
 % Update all sensors in the scene.
 updateSensors(scene)

 UAV Scenario Tutorial

1-59

end
hold off

1 UAV Toolbox Examples

1-60

Tune UAV Parameters Using MAVLink Parameter Protocol
This example shows how to use a MAVLink parameter protocol in MATLAB and communicate with
external ground control stations. A sample parameter protocol is provided for sending parameter
updates from a simulated unmanned aerial vehicle (UAV) to a ground control station using MAVLink
communication protocols. You setup the communication between the two MAVLink components, the
UAV and the ground control station. Then, you send and receive parameter updates to tune
parameter values for the UAV. Finally, if you use QGroundControl© as a ground control station, you
can get these parameter updates from QGroundControl and see them reflected in the program
window.

Parameter Protocol

MAVLink clients exchange information within the network using commonly defined data structures as
messages. MAVLink parameter protocol is used to exchange configuration settings between UAV and
ground control station (GCS). Parameter protocol follows a client-server pattern. For example, GCS
initiates a request in the form of messages and the UAV responds with data.

Setup common dialect

MAVLink messages are defined in an XML file. Standard messages that are common to all systems
are defined in the "common.xml" file. Other vendor-specific messages are stored in separate XML
files. For this example, use the "common.xml" file to setup a common dialect between the MAVLink
clients.

dialect = mavlinkdialect("common.xml");

This dialect is used to create mavlinkio objects which can understand messages within the dialect.

Setup UAV Connection

Create a mavlinkio object to represent a simulated UAV. Specify the SystemID, ComponentID,
AutoPilotType, and ComponentType parameters as name-value pairs. For this example, we use a
generic autopilot type, 'MAV_AUTOPILOT_GENERIC', with a quadrotor component type,
'MAV_TYPE_QUADROTOR'.

uavNode = mavlinkio(dialect,'SystemID',1,'ComponentID',1, ...
 'AutopilotType',"MAV_AUTOPILOT_GENERIC",'ComponentType',"MAV_TYPE_QUADROTOR");

The simulated UAV is listening on a UDP port for incoming messages. Connect to this UDP port using
the uavNode object.

uavPort = 14750;
connect(uavNode,"UDP",'LocalPort',uavPort);

Setup GCS Connection

Create a simulated ground control station (GCS) that listens on a different UDP port.

gcsNode = mavlinkio(dialect);
gcsPort = 14560;
connect(gcsNode,"UDP", 'LocalPort', gcsPort);

 Tune UAV Parameters Using MAVLink Parameter Protocol

1-61

http://qgroundcontrol.com/

Setup Client and Subscriber

Setup a client interface for the simulated UAV to communicate with the ground control station. Get
the LocalClient information as a structure and specify the system and component ID info to the
mavlinkclient object.

clientStruct = uavNode.LocalClient;
uavClient = mavlinkclient(gcsNode,clientStruct.SystemID,clientStruct.ComponentID);

Create a mavlinksub object to receive messages and process those messages using a callback. This
subscriber receives messages on the 'PARAM_VALUE' topic and specifically looks for messages
matching the system and component ID of uavClient. A callback function is specified to display the
payload of each new message received.

paramValueSub = mavlinksub(gcsNode,uavClient,'PARAM_VALUE','BufferSize',10,...
 'NewMessageFcn', @(~,msg)disp(msg.Payload));

Parameter Operations

Now that you have setup the connections between the UAV and ground control station. You can now
query and update the simulated UAV configuration using operations defined in parameter protocol,
exampleHelperMAVParamProtocol. There are 4 GCS operations that describe the workflow of
parameter protocol. Each message type listed has a brief description what the message executes
based on the specified parameter protocol.

1 PARAM_REQUET_LIST: Requests all parameters from the recipients. All values are broadcasted
using PARAM_VALUE messages.

2 PARAM_REQUEST_READ: Requests a single parameter. The specified parameter value is
broadcasted using a PARAM_VALUE message.

3 PARAM_SET: Commands to set the value of the specific parameter. After setting up the value, the
current value is broadcasted using a PARAM_VALUE message.

4 PARAM_VALUE: Broadcasts the current value of a parameter in response to the above requests
(PARAM_REQUEST_LIST, PARAM_REQUEST_READ or PARAM_SET).

paramProtocol = exampleHelperMAVParamProtocol(uavNode);

This parameter protocol has three parameter values: 'MAX_ROLL_RATE', 'MAX_PITCH_RATE', and
'MAX_YAW_RATE'. These values represent the maximum rate for roll, pitch, and yaw for the UAV in
degrees per second. In a real UAV systems, these rates can be tuned to adjust performance for more
or less acrobatic control.

Read All Parameters

To read all parameters from a UAV system, send a "PARAM_REQUEST_LIST" message from gcsNode
to uavNode. The sequence of operations are as follows:

1 GCS node sends a message whose topic is "PARAM_REQUEST_LIST" to the UAV node specifying
the target system and component using uavClient as defined above.

2 UAV node sends out all parameters individually in the form of "PARAM_VALUE" messages, since
we have a subscriber on the GCS node which is subscribed to the topic 'PARAM_VALUE',
message payload is being displayed right away.

msg = createmsg(dialect,"PARAM_REQUEST_LIST");

1 UAV Toolbox Examples

1-62

Assign values for the system and component ID into the message, use (:)= indexing to make sure
the assignment doesn't change the struct field data type.

msg.Payload.target_system(:) = uavNode.LocalClient.SystemID;
msg.Payload.target_component(:) = uavNode.LocalClient.ComponentID;

Send the parameter request to the UAV, which is listening on a port at local host IP address
'127.0.0.1'. Pause to allow the message to be processed. The parameter list is displayed in the
command window.

sendudpmsg(gcsNode,msg,"127.0.0.1",uavPort)
pause(1);

 param_value: 90
 param_count: 3
 param_index: 0
 param_id: 'MAX_ROLL_RATE '
 param_type: 9

 param_value: 90
 param_count: 3
 param_index: 1
 param_id: 'MAX_YAW_RATE '
 param_type: 9

 param_value: 90
 param_count: 3
 param_index: 2
 param_id: 'MAX_PITCH_RATE '
 param_type: 9

Read Single Parameter

Read a single parameter by sending a "PARAM_REQUEST_READ" message from the GCS node to the
UAV node.Send a message on the "PARAM_REQUEST_READ" topic to the UAVnode. Specify the
parameter index of 0, which refers to the 'MAX_ROLL_RATE' parameter. This index value queries the
first parameter value.

The UAV sends the updated parameter as a "PARAM_VALUE" message back to the GCS node. Because
we setup a subscriber to the "PARAM_VALUE" on the GCS node, the message payload is displayed to
the command window.

msg = createmsg(gcsNode.Dialect,"PARAM_REQUEST_READ");
msg.Payload.param_index(:) = 0;
msg.Payload.target_system(:) = uavNode.LocalClient.SystemID;
msg.Payload.target_component(:) = uavNode.LocalClient.ComponentID;

sendudpmsg(gcsNode,msg,"127.0.0.1",uavPort);
pause(1);

 param_value: 90
 param_count: 3
 param_index: 0
 param_id: 'MAX_ROLL_RATE '
 param_type: 9

 Tune UAV Parameters Using MAVLink Parameter Protocol

1-63

Write Parameters

To write a parameter, send a "PARAM_SET" message from GCS node to UAV node. Specify the ID,
type, and value of the message and send using the gcsNode object. The UAV sends the updated
parameter value back and the GCS subscriber displays the message payload. This message updates
the maximum yaw rate of the UAV by reducing it to 45 degrees per second.

msg = createmsg(gcsNode.Dialect,"PARAM_SET");
msg.Payload.param_id(1:12) = "MAX_YAW_RATE";
msg.Payload.param_type(:) = 9;
msg.Payload.param_value(:) = 45;
msg.Payload.target_system(:) = uavNode.LocalClient.SystemID;
msg.Payload.target_component(:) = uavNode.LocalClient.ComponentID;

sendudpmsg(gcsNode,msg,"127.0.0.1", uavPort);
pause(1);

 param_value: 45
 param_count: 3
 param_index: 2
 param_id: 'MAX_YAW_RATE '
 param_type: 9

Working with QGroundControl

QGroundControl© is an app that is used to perform flight control and mission planning for any
MAVLink-enabled UAV. You can use QGroundControl as a GCS to demonstrate how to access
parameters of our simulated UAV:

1 Download and launch QGroundControl. Define qgcPort number as 14550, which is the default
UDP port for the QGroundControl app.

2 Create a heartbeat message.
3 Send heartbeat message from UAV node to QGroundControl using the MATLAB timer object. By

default, the timer object executes the TimerFcn every 1 second. The TimerFcn is a
sendudpmsg call that sends the heartbeat message.

4 Once QGroundControl receives the heartbeat from the simulated UAV, QGroundControl creates a
Parameter panel widget for the user to read and update UAV parameters

qgcPort = 14550;
heartbeat = createmsg(dialect,"HEARTBEAT");
heartbeat.Payload.type(:) = enum2num(dialect,'MAV_TYPE',uavNode.LocalClient.ComponentType);
heartbeat.Payload.autopilot(:) = enum2num(dialect,'MAV_AUTOPILOT',uavNode.LocalClient.AutopilotType);
heartbeat.Payload.system_status(:) = enum2num(dialect,'MAV_STATE',"MAV_STATE_STANDBY");

heartbeatTimer = timer;
heartbeatTimer.ExecutionMode = 'fixedRate';
heartbeatTimer.TimerFcn = @(~,~)sendudpmsg(uavNode,heartbeat,'127.0.0.1',qgcPort);
start(heartbeatTimer);

While the timer runs, QGroundControl shows it has received the heartbeast message and is
connected to a UAV. In the Vehicle Setup tab, click Other > Misc to see the parameter values set
are reflected in the app.

1 UAV Toolbox Examples

1-64

http://qgroundcontrol.com/

Note: Because we use a generic autopilot type, "MAV_AUTOPILOT_GENERIC", QGroundControl does
not recognize the connection as a known autopilot type. This does not affect the connection and the
parameter values should still update as shown.

Close MAVLink connections

After experimenting with the QGroundControl parameter widget, stop the heartbeatTimer to stop
sending any more heartbeat messages. Delete the heartbeatTimer and the paramProtocol
objects. Finally, disconnect the UAV and GCS nodes to clean up the communication between systems.

stop(heartbeatTimer);
delete(heartbeatTimer);
delete(paramProtocol);

disconnect(uavNode);
disconnect(gcsNode);

 Tune UAV Parameters Using MAVLink Parameter Protocol

1-65

Exchange Data for MAVLink Microservices like Mission Protocol
and Parameter Protocol Using Simulink

This example shows how to implement MAVLink microservices like Mission protocol and Parameter
protocol using the MAVLink Serializer and MAVLink Deserializer blocks in Simulink®.

This example uses:

• MATLAB®
• Simulink®
• UAV Toolbox™
• Stateflow™
• Instrument Control Toolbox™
• DSP System Toolbox™

The Mission protocol microservice in MAVLink allows a Ground Control Station (GCS) to
communicate with a drone to send and receive mission information needed to execute a mission. The
Mission protocol microservice allows you to:

• Upload a mission from the GCS to the drone
• Download a mission from the drone
• Set the current mission item

The Parameter protocol microservice in MAVLink allows you to exchange parameters representing
important configuration information between the drone and the GCS. The parameters are
represented as key-value pairs.

This example explains how to:

• Upload a mission consisting of 10 waypoints from the GCS to a drone emulated in Simulink. Use
QGroundControl (QGC) as the GCS. If you do not have the QGC installed on the host computer,
downnload it from here.

• Read and write data to a list of 28 parameters from the QGC and the drone.

Design Model

To get started, follow these steps:

1. Open the exampleHelperMAVLinkMissionAndParamProtocol file in MATLAB and click Run. This
creates the workspace variables required to initialize the data in Simulink and upload the autopilot
parameters to the QGC.

2. Launch the example model in Simulink by clicking Open Model at the top of this page. You can
also use the following command to launch the model anytime after you clicked the Open Model
button once:

open_system('MissionAndParameterProtocolUsingMAVLink.slx');

1 UAV Toolbox Examples

1-66

The Simulink model consists of:

1. Model Setup: This area in the model consists of two subsystem blocks - Initialize Function and
Global Data Stores. These blocks are used to initialize the data that will be used in the model from
the signals generated in the base workspace.

2. Protocol Rx: This area in the model consists of the receive_udp subsystem block that is used to
receive UDP data from QGC. The subsystem contains a Simulink function that reads the MAVLink
data over UDP from the QGC, at each simulation step. The received MAVLink data is passed to a
Stateflow chart for decoding and parsing.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-67

3. Mission Protocol: This area in the model consists of two subsystem blocks that send mission
requests and mission acknowledgements to the QGC. These functions are called from the Stateflow
chart that implements the mission microservice.

4. Mission and Parameter Protocol: The Stateflow chart that implements the mission and
parameter logic in the model.

The received MAVLink data is deserialized in the process_udp Simulink function and then passed to
the Stateflow logic that performs four tasks:

a. ReceivingMission: This Stateflow subchart receives a mission from the QGC and decodes the
waypoints in the mission. It implements the protocol of Mission microservice that uploads a mission
from QGC to drone, as described in Upload a Mission to the Vehicle.

1 UAV Toolbox Examples

1-68

b. SendingParams: This Stateflow subchart uploads the parameters created in the base workspace to
the QGC by following the parameter protocol, as described in Read All Parameters.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-69

c. SendSingleParams: This Stateflow subchart defines how to send a single parameter form the drone
to the QGC, as described in Read Single Parameter.

d. WriteSingleParam: This Stateflow subchart defines how to update the parameter values from the
QGC and see them on the drone, as described in Write Parameters.

1 UAV Toolbox Examples

1-70

5. Logic to read received waypoints and parameters: Stateflow implements the two protocols and
outputs the received waypoints and uploaded parameter values.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-71

The next section explains how to upload a mission from the QGC to the drone.

Upload a Mission from QGC to Drone and Run the Simulink Model

1. Launch the QGC and navigate to the Plan View.

1 UAV Toolbox Examples

1-72

2. A preplanned mission, MissionProtocol.plan, is available with this example. Click Open Model at
the top of this page to save the plan file to your computer. After you save the .plan file, launch QGC,
and click File > Open to upload the plan to the QGC.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-73

After you upload the plan, the mission is visible in QGC.

1 UAV Toolbox Examples

1-74

3. Run the Simulink model. The Simulink model sends HEARTBEAT message over MAVLink to QGC
and thus establish connection with QGC.

4. Click Upload at the top right of QGC interface to upload the mission from QGroundControl.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-75

5. Observe that the latitude and longitude values from the first two waypoints of the uploaded mission
are being displayed in Simulink.

1 UAV Toolbox Examples

1-76

6. Change the waypoint1 and waypoint2 in the QGC by dragging the waypoints to a different location
in the plan. Upload the modified mission by clicking Upload Required.

7. Observe the modified Latitude/Longitude values for waypoint 1 and 2 in Simulink.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-77

Modify Parameters in QGC and Send Them to Simulink

When you run the exampleHelperMAVLinkMissionAndParamProtocol file in the MATLAB Command
Window, a workspace variable apParams is created, which is an array of 28 flight parameters.

When you run the Simulink model, it connects to the QGC, and the QGC reads the parameters from
Simulink.

The parameters can be visualized and modified in the QGC:

1. Navigate to the Vehicle Setup pane in the QGC. Select the Parameters tab.

2. In the Parameters tab, select Other to list all the parameters that the QGC read from Simulink.

1 UAV Toolbox Examples

1-78

3. The model displays the values for GDNC_TSTAR and GDNC_TURN_LEAD parameters. Click the
GDNC_TSTAR and GDNC_TURN_LEAD parameters and modify their corresponding values in the
QGC.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-79

4. The QGC writes the values of these modified parameters using the parameter protocol
microservice to Simulink. Observe the parameter values being modified in Simulink.

Other Things to try

The Stateflow charts explained in this example do not implement the following scenario:

• If the communication between the drone and the QGC breaks off at some point and reconnects,
the mission protocol upload should resume after the waypoint from which the drone had
transmitted data before disconnecting.

You can modify the Stateflow charts, so that even when the communication snaps, Stateflow
remembers the last waypoint transmitted.

1 UAV Toolbox Examples

1-80

3D Simulation – User's Guide

2

Unreal Engine Simulation for Unmanned Aerial Vehicles
UAV Toolbox provides a co-simulation framework that models driving algorithms in Simulink and
visualizes their performance in a virtual simulation environment. This environment uses the Unreal
Engine from Epic Games.

Simulink blocks related to the simulation environment can be found in the UAV Toolbox >
Simulation 3D block library. These blocks provide the ability to:

• Configure prebuilt scenes in the simulation environment.
• Place and move UAVs within these scenes.
• Set up camera and lidar sensors on the vehicles.
• Simulate sensor outputs based on the environment around the UAV.
• Obtain ground truth data for semantic segmentation and depth information.

This simulation tool is commonly used to supplement real data when developing, testing, and
verifying the performance of UAV flight algorithms. In conjunction with a UAV vehicle model, you can
use these blocks to perform realistic closed-loop simulations that encompass the entire UAV flight-
control stack, from perception to control.

For more details on the simulation environment, see “How Unreal Engine Simulation for UAVs Works”
on page 2-7.

Unreal Engine Simulation Blocks
To access the UAV Toolbox > Simulation 3D library, at the MATLAB® command prompt, enter
uavsim3dlib.

Scenes

To configure a model to co-simulate with the simulation environment, add a Simulation 3D Scene
Configuration block to the model. Using this block, you can choose from a prebuilt scene where you
can test and visualize your driving algorithms. The following image is from the US City Block scene.

The toolbox includes these scenes.

2 3D Simulation – User's Guide

2-2

Scene Description
US City Block City block with intersections, barriers, and traffic

lights

If you have the UAV Toolbox Interface for Unreal Engine Projects support package, then you can
modify these scenes or create new ones. For more details, see “Customize Unreal Engine Scenes for
UAVs” on page 2-24.

Vehicles

To define a virtual vehicle in a scene, add a Simulation 3D UAV Vehicle block to your model. Using
this block, you can control the movement of the vehicle by supplying the X, Y, and yaw values that
define its position and orientation at each time step. The vehicle automatically moves along the
ground.

You can also specify the color and type of vehicle. The toolbox includes these vehicle types:

• Quadrotor
• Fixed Wing Aircraft

Sensors

You can define virtual sensors and attach them at various positions on the vehicles. The toolbox
includes these sensor modeling and configuration blocks.

Block Description
Simulation 3D Camera Camera model with lens. Includes parameters for

image size, focal length, distortion, and skew.
Simulation 3D Fisheye Camera Fisheye camera that can be described using the

Scaramuzza camera model. Includes parameters
for distortion center, image size, and mapping
coefficients.

Simulation 3D Lidar Scanning lidar sensor model. Includes
parameters for detection range, resolution, and
fields of view.

For more details on choosing a sensor, see “Choose a Sensor for Unreal Engine Simulation” on page
2-13.

Algorithm Testing and Visualization
UAV Toolbox simulation blocks provide the tools for testing and visualizing path planning, UAV
control, and perception algorithms.

Path Planning and Vehicle Control

You can use the Unreal Engine simulation environment to visualize the motion of a vehicle in a
prebuilt scene. This environment provides you with a way to analyze the performance of path
planning and vehicle control algorithms. After designing these algorithms in Simulink, you can use
the uavsim3dlib library to visualize vehicle motion in one of the prebuilt scenes.

 Unreal Engine Simulation for Unmanned Aerial Vehicles

2-3

Perception

UAV Toolbox provides several blocks for detailed camera and lidar sensor modeling. By mounting
these sensors on UAVs within the virtual environment, you can generate synthetic sensor data or
sensor detections to test the performance of your sensor models against perception algorithms.

Closed-Loop Systems

After you design and test a perception system within the simulation environment, you can then use it
to drive a control system that actually steers a vehicle. In this case, rather than manually set up a
trajectory, the UAV uses the perception system to fly itself. By combining perception and control into
a closed-loop system in the 3D simulation environment, you can develop and test more complex
algorithms, such as automated delivery.

See Also

2 3D Simulation – User's Guide

2-4

Unreal Engine Simulation Environment Requirements and
Limitations

UAV Toolbox provides an interface to a simulation environment that is visualized using the Unreal
Engine from Epic Games. Version 4.23 of this visualization engine comes installed with UAV Toolbox.
When simulating in this environment, keep these requirements and limitations in mind.

Software Requirements
• Windows® 64-bit platform
• Visual Studio® 2017 with minimum Version 15.9
• Microsoft® DirectX® — If this software is not already installed on your machine and you try to

simulate in the 3D environment, UAV Toolbox prompts you to install it. Once you install the
software, you must restart the simulation.

In you are customizing scenes, verify that your Unreal Engine project is compatible with the Unreal
Engine version supported by your MATLAB release.

MATLAB Release Unreal Engine Version
R2020b 4.23

Note Mac and Linux® platforms are not supported.

Minimum Hardware Requirements
• Graphics card (GPU) — Virtual reality-ready with 8 GB of on-board RAM
• Processor (CPU) — 2.60 GHz
• Memory (RAM) — 12 GB

Limitations
The Unreal Engine simulation environment blocks do not support:

• Code generation
• Model reference
• Multiple instances of the Simulation 3D Scene Configuration block
• Multiple instances of the 3D simulation environment
• Rapid accelerator mode

In addition, when using these blocks in a closed-loop simulation, all Unreal Engine simulation
environment blocks must be in the same subsystem.

See Also
Simulation 3D Scene Configuration

 Unreal Engine Simulation Environment Requirements and Limitations

2-5

More About
• “Unreal Engine Simulation for Unmanned Aerial Vehicles” on page 2-2
• “How Unreal Engine Simulation for UAVs Works” on page 2-7

External Websites
• Unreal Engine

2 3D Simulation – User's Guide

2-6

https://www.unrealengine.com/en-US/what-is-unreal-engine-4

How Unreal Engine Simulation for UAVs Works
UAV Toolbox provides a co-simulation framework that you can use to model UAV algorithms in
Simulink and visualize their performance in a virtual simulation environment. This environment uses
the Unreal Engine by Epic Games.

Understanding how this simulation environment works can help you troubleshoot issues and
customize your models.

Communication with 3D Simulation Environment
When you use UAV Toolbox to run your algorithms, Simulink co-simulates the algorithms in the
visualization engine.

In the Simulink environment, UAV Toolbox:

• Configures the visualization environment, specifically the ray tracing, scene capture from
cameras, and initial object positions

• Determines the next position of the objects by using the simulation environment feedback

The diagram summarizes the communication between Simulink and the visualization engine.

Block Execution Order
During simulation, the Unreal Engine simulation blocks follow a specific execution order:

1 The Simulation 3D UAV Vehicle blocks initialize the vehicles and send their Translation, and
Rotation signal data to the Simulation 3D Scene Configuration block.

2 The Simulation 3D Scene Configuration block receives the vehicle data and sends it to the sensor
blocks.

3 The sensor blocks receive the vehicle data and use it to accurately locate and visualize the
vehicles.

The Priority property of the blocks controls this execution order. To access this property for any
block, right-click the block, select Properties, and click the General tab. By default, Simulation 3D
UAV Vehicle blocks have a priority of -1, Simulation 3D Scene Configuration blocks have a priority of
0, and sensor blocks have a priority of 1.

The diagram shows this execution order.

 How Unreal Engine Simulation for UAVs Works

2-7

If your sensors are not detecting vehicles in the scene, it is possible that the Unreal Engine
simulation blocks are executing out of order. Try updating the execution order and simulating again.
For more details on execution order, see “Control and Display Execution Order” (Simulink).

Also be sure that all 3D simulation blocks are located in the same subsystem. Even if the blocks have
the correct Priority settings, if they are located in different subsystems, they still might execute out
of order.

See Also

More About
• “Unreal Engine Simulation for Unmanned Aerial Vehicles” on page 2-2
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-5
• “Choose a Sensor for Unreal Engine Simulation” on page 2-13
• “Coordinate Systems for Unreal Engine Simulation in UAV Toolbox” on page 2-9

2 3D Simulation – User's Guide

2-8

Coordinate Systems for Unreal Engine Simulation in UAV
Toolbox

UAV Toolbox enables you to simulate your driving algorithms in a virtual environment that uses the
Unreal Engine from Epic Games. In general, the coordinate systems used in this environment follow
the conventions described in “Coordinate Systems for Modeling” (Aerospace Toolbox). However,
when simulating in this environment, it is important to be aware of the specific differences and
implementation details of the coordinate systems.

UAV Toolbox uses these coordinate systems to calculate the vehicle dynamics and position objects in
the Unreal Engine visualization environment.

Environment Description Coordinate Systems
UAV vehicle
dynamics in
Simulink

The right-hand rule establishes the X-Y-Z
sequence and rotation of the coordinate axes
used to calculate the vehicle dynamics. The UAV
Toolbox interface to the Unreal Engine simulation
environment uses the right-handed (RH)
Cartesian coordinate systems:

• Earth-fixed (inertial)
• Vehicle

“Earth-Fixed (Inertial)
Coordinate System” on page 2-
9

“Body (Non-Inertial) Coordinate
System” on page 2-9

Unreal Engine
visualization

To position objects and query the Unreal Engine
visualization environment, the UAV Toolbox uses
a world coordinate system.

“Unreal Engine World
Coordinate System” on page 2-
11

Earth-Fixed (Inertial) Coordinate System
The earth-fixed coordinate system (XE, YE, ZE) axes are fixed in an inertial reference frame. The
inertial reference frame has zero linear and angular acceleration and zero angular velocity. In
Newtonian physics, the earth is an inertial reference.

Axis Description
XE The XE axis is in the forward direction of the vehicle.

The XE and YE axes are parallel to the ground plane. The ground plane is a
horizontal plane normal to the gravitational vector.

YE

ZE In the Z-up orientation, the positive ZE axis points upward.

In the Z-down orientation, the positive ZE axis points downward.

Body (Non-Inertial) Coordinate System
Modeling aircraft and spacecraft are simplest if you use a coordinate system fixed in the body itself.
In the case of aircraft, the forward direction is modified by the presence of wind, and the craft's
motion through the air is not the same as its motion relative to the ground. The non-inertial body
coordinate system is fixed in both origin and orientation to the moving craft. The craft is assumed to
be rigid. The orientation of the body coordinate axes is fixed in the shape of body.

 Coordinate Systems for Unreal Engine Simulation in UAV Toolbox

2-9

• The x-axis points through the nose of the craft.
• The y-axis points to the right of the x-axis (facing in the pilot's direction of view), perpendicular to

the x-axis.
• The z-axis points down through the bottom of the craft, perpendicular to the x-y plane and

satisfying the RH rule.

Translational Degrees of Freedom

Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom

Rotations are defined by the Euler angles P, Q, R or Φ, Θ, Ψ. They are

• P or Φ: Roll about the x-axis
• Q or Θ: Pitch about the y-axis
• R or Ψ: Yaw about the z-axis

2 3D Simulation – User's Guide

2-10

Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

Unreal Engine World Coordinate System
The Unreal Engine environment uses a world coordinate system with axes that are fixed in the
inertial reference frame.

Axis Description
X Forward direction of the vehicle

Roll — Right-handed rotation about X-axis

 Coordinate Systems for Unreal Engine Simulation in UAV Toolbox

2-11

Axis Description
Y Extends to the right of the vehicle, parallel to the ground plane

Pitch — Right-handed rotation about Y-axis
Z Extends upwards

Yaw — Left-handed rotation about Z-axis

See Also
Fixed Wing Aircraft | Quadrotor

More About
• “How Unreal Engine Simulation for UAVs Works” on page 2-7
• “Simulate Simple Flight Scenario and Sensor in Unreal Engine Environment” on page 2-14

2 3D Simulation – User's Guide

2-12

Choose a Sensor for Unreal Engine Simulation
In UAV Toolbox, you can obtain high-fidelity sensor data from a virtual environment. This
environment is rendered using the Unreal Engine from Epic Games.

The table summarizes the sensor blocks that you can simulate in this environment.

Sensor Block Description Visualization Example
Simulation 3D
Camera

• Camera with lens that is
based on the ideal pinhole
camera. See “What Is
Camera Calibration?”
(Computer Vision Toolbox)

• Includes parameters for
image size, focal length,
distortion, and skew

• Includes options to output
ground truth for depth
estimation and semantic
segmentation

Display camera images by using
a Video Viewer or To Video
Display block. Sample
visualization:

“Depth and
Semantic
Segmentation
Visualization
Using Unreal
Engine
Simulation” on
page 2-19

Display depth maps by using a
Video Viewer or To Video
Display block. Sample
visualization:

“Depth and
Semantic
Segmentation
Visualization
Using Unreal
Engine
Simulation” on
page 2-19

Display semantic segmentation
maps by using a Video Viewer or
To Video Display block. Sample
visualization:

“Depth and
Semantic
Segmentation
Visualization
Using Unreal
Engine
Simulation” on
page 2-19

Simulation 3D
Fisheye Camera

• Fisheye camera that can be
described using the
Scaramuzza camera model.
See “Fisheye Calibration
Basics” (Computer Vision
Toolbox)

• Includes parameters for
distortion center, image size,
and mapping coefficients

Display camera images by using
a Video Viewer or To Video
Display block. Sample
visualization:

“Simulate
Simple Flight
Scenario and
Sensor in
Unreal Engine
Environment”
on page 2-14

Simulation 3D
Lidar

• Scanning lidar sensor model
• Includes parameters for

detection range, resolution,
and fields of view

Display point cloud data by
using pcplayer within a
MATLAB Function block.
Sample visualization:

“UAV Package
Delivery” on
page 1-46

See Also
Simulation 3D Scene Configuration

 Choose a Sensor for Unreal Engine Simulation

2-13

Simulate Simple Flight Scenario and Sensor in Unreal Engine
Environment

UAV Toolbox™ provides blocks for visualizing sensors in a simulation environment that uses the
Unreal Engine® from Epic Games®. This model simulates a simple flight scenario in a prebuilt scene
and captures data from the scene using a fisheye camera sensor. Use this model to learn the basics of
configuring and simulating scenes, vehicles, and sensors. For more background on the Unreal Engine
simulation environment, see “Unreal Engine Simulation for Unmanned Aerial Vehicles” on page 2-2.

Model Overview

The model consists of these main components:

• Scene – A Simulation 3D Scene Configuration block configures the scene in which you simulate.
• Vehicles – A Simulation 3D UAV Vehicle blocks configures the quadrotor within the scene and
specifies its trajectory.

• Sensor – A Simulation 3D Fisheye Camera configures the mounting position and parameters of the
fisheye camera used to capture simulation data. A Video Viewer (Computer Vision Toolbox) block
visualizes the simulation output of this sensor.

You can open the model using the following command.

open_system("uav_simple_flight_model.slx")

Inspect Scene

In the Simulation 3D Scene Configuration block, the Scene name parameter determines the scene
where the simulation takes place. This model uses the US City Block scene. To explore a scene, you
can open the 2D image corresponding to the Unreal Engine scene.

imshow('USCityBlock.jpg',...
 'XData', [-242.998152046784, 200.198152046784],...

2 3D Simulation – User's Guide

2-14

 'YData', [-215.598152046784,227.598152046784]);
set(gca,'YDir','normal')

The Scene view parameter of this block determines the view from which the Unreal Engine window
displays the scene. In this block, Scene view is set to the root of the scene (the scene origin), select
root. You can also change the scene view to the quadrotor UAV.

Inspect Vehicle

The Simulation 3D UAV Vehicle block models the quadcopter, named Quadrotor1, in the scenario.
During simulation, the quadrotor flys one complete circle with a radius of 5m and elevation of 1.5m

 Simulate Simple Flight Scenario and Sensor in Unreal Engine Environment

2-15

around the center of the scene. The viewpoint of the quadrotor yaw oscillates yaw from left to right in
the direction of travel.

To create more realistic trajectories, you can obtain waypoints from a scene interactively and specify
these waypoints as inputs to the Simulation 3D UAV Vehicle block. See Select Waypoints for Unreal
Engine Simulation.

Inspect Sensor

The Simulation 3D Fisheye Camera block models the sensor used in the scenario. Open this block and
inspect its parameters.

• The Mounting tab contains parameters that determine the mounting location of the sensor. The
fisheye camera sensor is mounted to the center of the roof of the ego vehicle.

• The Parameters tab contains the intrinsic camera parameters of a fisheye camera. These
parameters are set to their default values.

• The Ground Truth tab contains a parameter for outputting the location and orientation of the
sensor in meters and radians. In this model, the block outputs these values so you can see how
they change during simulation.

The block outputs images captured from the simulation. During simulation, the Video Viewer block
displays these images.

2 3D Simulation – User's Guide

2-16

Simulate Model

Simulate the model. When the simulation begins, it can take a few seconds for the visualization
engine to initialize, especially when you are running it for the first time. The MathWorks_Aerospace
window shows a view of the scene in the Unreal Engine environment.

 Simulate Simple Flight Scenario and Sensor in Unreal Engine Environment

2-17

To change the view of the scene during simulation, use the numbers 1–9 on the numeric keypad. For a
bird's-eye view of the scene, press 0.

After simulating the model, try modifying the intrinsic camera parameters and observe the effects on
simulation. You can also change the type of sensor block. For example, try substituting the 3D
Simulation Fisheye Camera with a 3D Simulation Camera block. For more details on the available
sensor blocks, see “Choose a Sensor for Unreal Engine Simulation” on page 2-13.

See Also
Simulation 3D Camera | Simulation 3D Scene Configuration | Simulation 3D UAV Vehicle

2 3D Simulation – User's Guide

2-18

Depth and Semantic Segmentation Visualization Using Unreal
Engine Simulation

This example shows how to visualize depth and semantic segmentation data captured from a camera
sensor in a simulation environment. This environment is rendered using the Unreal Engine® from
Epic Games®.

You can use depth visualizations to validate depth estimation algorithms for your sensors. You can use
semantic segmentation visualizations to analyze the classification scheme used for generating
synthetic semantic segmentation data from the Unreal Engine environment.

Model Setup

The model used in this example simulates a vehicle driving in a city scene.

• A Simulation 3D Scene Configuration block sets up simulation with the US City Block scene.
• A Simulation 3D UAV Vehicle block specifies the driving route of the vehicle.
• A Simulation 3D Camera block mounted to the quadrotor captures data from the flight. This block

outputs the camera, depth, and semantic segmentation displays by using To Video Display
(Computer Vision Toolbox) (Computer Vision Toolbox) blocks.

Depth Visualization

A depth map is a grayscale representation of camera sensor output. These maps visualize camera
images in grayscale, with brighter pixels indicating objects that are farther away from the sensor. You
can use depth maps to validate depth estimation algorithms for your sensors.

The Depth port of the Simulation 3D Camera block outputs a depth map of values in the range of 0 to
1000 meters. In this model, for better visibility, a Saturation block saturates the depth output to a
maximum of 150 meters. Then, a Gain block scales the depth map to the range [0, 1] so that the To
Video Display block can visualize the depth map in grayscale.

Semantic Segmentation Visualization

Semantic segmentation describes the process of associating each pixel of an image with a class label,
such as road, building, or traffic sign. In the 3D simulation environment, you generate synthetic

 Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation

2-19

semantic segmentation data according to a label classification scheme. You can then use these labels
to train a neural network for UAV flight applications, such as landing zone identification. By
visualizing the semantic segmentation data, you can verify your classification scheme.

The Labels port of the Simulation 3D Camera block outputs a set of labels for each pixel in the
output camera image. Each label corresponds to an object class. For example, in the default
classification scheme used by the block, 1 corresponds to buildings. A label of 0 refers to objects of
an unknown class and appears as black. For a complete list of label IDs and their corresponding
object descriptions, see the Labels port description on the Simulation 3D Camera block reference
page.

The MATLAB® Function block uses the label2rgb function to convert the labels to a matrix of RGB
triplets for visualization. The colormap is based on the colors used in the CamVid dataset, as shown in
the “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox) example. The colors
are mapped to the predefined label IDs used in the default Unreal Engine simulation scenes. The
helper function sim3dColormap defines the colormap. Inspect these colormap values.

open sim3dColormap.m

Model Simulation

Run the model.

sim('uav_ue4_depth_imaging.slx');

When the simulation begins, it can take a few seconds for the visualization engine to initialize,
especially when you are running it for the first time. The MathWorks_Aerospace window displays
the scene from the scene origin. In this scene, the quadrotor UAV flies a short distance down one city
block.

2 3D Simulation – User's Guide

2-20

https://localhost:31528/toolbox/matlab/images/ref/label2rgb.html

The Camera Display, Depth Display, and Semantic Segmentation Display blocks display the outputs
from the camera sensor.

 Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation

2-21

2 3D Simulation – User's Guide

2-22

To change the visualization range of the output depth data, try updating the values in the Saturation
and Gain blocks.

To change the semantic segmentation colors, try modifying the color values defined in the
sim3dColormap function. Alternatively, in the uavlabel2rgb MATLAB Function block, try replacing
the input colormap with your own colormap or a predefined colormap. See colormap.

See Also
Simulation 3D Camera | Simulation 3D Scene Configuration | Simulation 3D UAV Vehicle

 Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation

2-23

https://localhost:31528/toolbox/matlab/matlab/ref/colormap.html

Customize Unreal Engine Scenes for UAVs
UAV Toolbox comes installed with prebuilt scenes in which to simulate and visualize the performance
of UAV algorithms modeled in Simulink. These scenes are visualized using the Unreal Engine from
Epic Games. By using the Unreal® Editor and the UAV Toolbox Interface for Unreal Engine Projects,
you can customize these scenes. You can also use the Unreal Editor and the support package to
simulate within scenes from your own custom project.

With custom scenes, you can co-simulate in both Simulink and the Unreal Editor so that you can
modify your scenes between simulation runs. You can also package your scenes into an executable file
so that you do not have to open the editor to simulate with these scenes.

To customize Unreal Engine scenes for UAV flight simulations, follow these steps:

1 “Install Support Package for Customizing Scenes” on page 2-25
2 “Customize Unreal Engine Scenes Using Simulink and Unreal Editor” on page 2-28
3 “Package Custom Scenes into Executable” on page 2-33

See Also
Simulation 3D Scene Configuration

2 3D Simulation – User's Guide

2-24

Install Support Package for Customizing Scenes
To customize scenes in the Unreal Editor and use them in Simulink, you must install the UAV Toolbox
Interface for Unreal Engine Projects.

Verify Software and Hardware Requirements
Before installing the support package, make sure that your environment meets the minimum software
and hardware requirements described in “Unreal Engine Simulation Environment Requirements and
Limitations” on page 2-5. In particular, verify that you have version 15.9 or higher of Visual Studio
2017 installed. This software is required for using the Unreal Editor to customize scenes.

In addition, verify that your project is compatible with Unreal Engine, Version 4.23. If your project
was created with an older version of the Unreal Editor, upgrade your project to version 4.23.

Install Support Package
To install the UAV Toolbox Interface for Unreal Engine Projects support package, follow these steps:

1 On the MATLAB Home tab, in the Environment section, select Add-Ons > Get Add-Ons.

2 In the Add-On Explorer window, search for the UAV Toolbox Interface for Unreal Engine Projects
support package. Click Install.

Note You must have write permission for the installation folder.

Set Up Scene Customization Using Support Package
The UAV Toolbox Interface for Unreal Engine Projects support package includes these components:

• An Unreal Engine project file (MathWorks_Aerospace.uproject) and its associated files. This
project file includes editable versions of the prebuilt 3D scenes that you can select from the Scene
source parameter of the Simulation 3D Scene Configuration block.

• Two plugin files, MathWorkSimulation.uplugin and MathWorksUAV.uplugin. This plugin
establishes the connection between Simulink and the Unreal Editor and is required for co-
simulation.

 Install Support Package for Customizing Scenes

2-25

To set up scene customization, you must copy this project and plugin onto your local machine.

Copy Project to Local Folder

Copy the mwas project folder into a folder on your local machine.

1 Specify the path to the support package folder that contains the project. If you previously
downloaded the support package, specify only the latest download path, as shown here. Also
specify a local folder destination in which to copy the project. This code specifies a local folder of
C:\Local.

supportPackageFolder = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot, ...
 "toolbox","uav","spkg","uavunrealengine");
localFolder = "C:\Local";

2 Copy the MathWorks_Aerospace project from the support package folder to the local
destination folder.

projectFolderName = "mwas";
projectSupportPackageFolder = fullfile(supportPackageFolder,projectFolderName);
projectLocalFolder = fullfile(localFolder,projectFolderName);
if ~exist(projectLocalFolder,"dir")
 copyfile(projectSupportPackageFolder,projectLocalFolder);
end

The MathWorks_Aerospace.uproject file and all of its supporting files are now located in a
folder named mwas within the specified local folder. For example: C:\Local\mwas.

Copy Plugin to Unreal Editor

Copy the MathWorksSimulation and MathWorksUAV plugins into the Plugins folder of your
Unreal Engine installation.

1 Specify the local folder containing your Unreal Engine installation. This code shows the default
installation location for the editor on a Windows machine.

ueInstallFolder = "C:\Program Files\Epic Games\UE_4.23";
2 Copy the plugins from the support package into the Plugins folder.

supportPackageFolder = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot, ...
 "toolbox","uav","spkg","uavunrealengine");

mwSimPluginName = "MathWorksSimulation.uplugin";
mwSimPluginFolder = fullfile(supportPackageFolder,"mwas_plugins","MathWorksSimulation");
mwUAVPluginName = "MathWorksUAV.uplugin";
mwUAVPluginFolder = fullfile(supportPackageFolder,"mwas_plugins","MathWorksUAV");

uePluginFolder = fullfile(ueInstallFolder,"Engine","Plugins");
uePluginDestination = fullfile(uePluginFolder,"Marketplace","MathWorks");

cd(uePluginFolder)
foundPlugins = [dir("**/" + mwSimPluginName) dir("**/" + mwUAVPluginName)];

if ~isempty(foundPlugins)
 numPlugins = size(foundPlugins,1);
 msg2 = cell(1,numPlugins);

2 3D Simulation – User's Guide

2-26

 pluginCell = struct2cell(foundPlugins);

 msg1 = "Plugin(s) already exist here:" + newline + newline;
 for n = 1:numPlugins
 msg2{n} = " " + pluginCell{2,n} + newline;
 end
 msg3 = newline + "Please remove plugin folder(s) and try again.";
 msg = msg1 + msg2 + msg3;
 warning(msg);
else
 copyfile(mwSimPluginFolder, fullfile(uePluginDestination,"MathWorksSimulation"));
 disp("Successfully copied MathWorksSimulation plugin to UE4 engine plugins!")
 copyfile(mwUAVPluginFolder, fullfile(uePluginDestination,"MathWorksUAV"));
 disp("Successfully copied MathWorksUAV plugin to UE4 engine plugins!")
end

After you install and set up the support package, you can begin customizing scenes. See “Customize
Unreal Engine Scenes Using Simulink and Unreal Editor” on page 2-28.

See Also

 Install Support Package for Customizing Scenes

2-27

Customize Unreal Engine Scenes Using Simulink and Unreal
Editor

After you install the UAV Toolbox Interface for Unreal Engine Projects support package as described
in “Install Support Package for Customizing Scenes” on page 2-25, you can simulate in custom scenes
simultaneously from both the Unreal Editor and Simulink. By using this co-simulation framework, you
can add vehicles and sensors to a Simulink model and then run this simulation in your custom scene.

Open Unreal Editor from Simulink
If you open your Unreal project file directly in the Unreal Editor, Simulink is unable to establish a
connection with the editor. To establish this connection, you must open your project from a Simulink
model.

1 Open a Simulink model configured to simulate in the 3D environment. At a minimum, the model
must contain a Simulation 3D Scene Configuration block. For example, open a simple model that
simulates a UAV flying in a US city block. This model here is the photo-realistic simulation variant
from the “UAV Package Delivery” on page 1-46 example.

2 In the Simulation 3D Scene Configuration block of this model, set the Scene source parameter
to Unreal Editor.

3 In the Project parameter, browse for the project file that contains the scenes that you want to
customize.

For example, this sample path specifies the MathWorks_Aerospace project that comes installed
with the UAV Toolbox Interface for Unreal Engine Projects support package.

C:\Local\mwas\MathWorks_Aerospace.uproject

This sample path specifies a custom project.

Z:\UnrealProjects\myProject\myProject.uproject
4 Click Open Unreal Editor. The Unreal Editor opens and loads a scene from your project.

2 3D Simulation – User's Guide

2-28

The first time that you open the Unreal Editor from Simulink, you might be asked to rebuild
UE4Editor DLL files or the MathWorks_Aerospace module. Click Yes to rebuild these files or
modules. The editor also prompts you that new plugins are available. Click Manage Plugins and
verify that the MathWorks Interface plugin is installed. This plugin is the
MathWorksSimulation.uplugin file that you copied into your Unreal Editor installation in “Install
Support Package for Customizing Scenes” on page 2-25.

When the editor opens, you can ignore any warning messages about files with the name
'_BuiltData' that failed to load.

If you receive a warning that the lighting needs to be rebuilt, from the toolbar above the editor
window, select Build > Build Lighting Only. The editor issues this warning the first time you open
a scene or when you add new elements to a scene.

Reparent Actor Blueprint

Note If you are using a scene from the MathWorks_Aerospace project that comes installed with the
UAV Toolbox Interface for Unreal Engine Projects support package, skip this section. However, if you
create a new scene based off of one of the scenes in this project, then you must complete this section.

The first time that you open a custom scene from Simulink, you need to associate, or reparent, this
project with the Sim3dLevelScriptActor level blueprint used in UAV Toolbox. The level blueprint
controls how objects interact with the Unreal Engine environment once they are placed in it.
Simulink returns an error at the start of simulation if the project is not reparented. You must reparent
each scene in a custom project separately.

To reparent the level blueprint, follow these steps:

1 In the Unreal Editor toolbar, select Blueprints > Open Level Blueprint.
2 In the Level Blueprint window, select File > Reparent Blueprint.
3 Click the Sim3dLevelScriptActor blueprint. If you do not see the Sim3dLevelScriptActor

blueprint listed, use these steps to check that you have the MathWorksSimulation plugin
installed and enabled:

a In the Unreal Editor toolbar, select Settings > Plugins.
b In the Plugins window, verify that the MathWorks Interface plugin is listed in the installed

window. If the plugin is not already enabled, select the Enabled check box.

If you do not see the MathWorks Interface plugin in this window, repeat the steps under
“Copy Plugin to Unreal Editor” on page 2-26 and reopen the editor from Simulink.

c Close the editor and reopen it from Simulink.
4 Close the Level Blueprint window.

Create or Modify Scenes in Unreal Editor
After you open the editor from Simulink, you can modify the scenes in your project or create new
scenes.

 Customize Unreal Engine Scenes Using Simulink and Unreal Editor

2-29

Open Scene

In the Unreal Editor, scenes within a project are referred to as levels. Levels come in several types,
and scenes have a level type of map.

To open a prebuilt scene from the MathWorks_Aerospace.uproject file, in the Content Browser
pane below the editor window, navigate to the Content > Maps folder. Then, select the map that
corresponds to the scene you want to modify.

Unreal Editor Map UAV Toolbox Scene
USCityBlock US City Block

To open a scene within your own project, in the Content Browser pane, navigate to the folder that
contains your scenes.

Create New Scene

To create a new scene in your project, from the top-left menu of the editor, select File > New Level.

Alternatively, you can create a new scene from an existing one. This technique is useful if you want to
use one of the prebuilt scenes in the MathWorks_Aerospace project as a starting point for creating
your own scene. To save a version of the currently opened scene to your project, from the top-left
menu of the editor, select File > Save Current As. The new scene is saved to the same location as
the existing scene.

Add Assets to Scene

In the Unreal Editor, elements within a scene are referred to as assets. To add assets to a scene, you
can browse or search for them in the Content Browser pane at the bottom and drag them into the
editor window.

When adding assets to a scene that is in the MathWorks_Aerospace project, you can choose from a
library of driving-related assets. These assets are built as static meshes and begin with the prefix
SM_. Search for these objects in the Content Browser pane.

For example, add a stop sign to a scene in the MathWorks_Aerospace project.

1 In the Content Browser pane at the bottom of the editor, navigate to the Content folder.
2 In the search bar, search for SM_StopSign. Drag the stop sign from the Content Browser into

the editing window. You can then change the position of the stop sign in the editing window or on
the Details pane on the right, in the Transform section.

The Unreal Editor uses a left-hand Z-up coordinate system, where the Y-axis points to the right. UAV
Toolbox uses a right-hand Z-down coordinate system, where the Y-axis points to the left. When
positioning objects in a scene, keep this coordinate system difference in mind. In the two coordinate
systems, the positive and negative signs for the Y-axis and pitch angle values are reversed.

For more information on modifying scenes and adding assets, see Unreal Engine 4 Documentation.

To migrate assets from the MathWorks_Aerospace project into your own project file, see Migrating
Assets in the Unreal Engine documentation.

2 3D Simulation – User's Guide

2-30

https://docs.unrealengine.com/en-US/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Browser/UserGuide/Migrate/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Browser/UserGuide/Migrate/index.html

To obtain semantic segmentation data from a scene, then you must apply stencil IDs to the objects
added to a scene. For more information, see “Apply Semantic Segmentation Labels to Custom Scenes”
on page 2-35.

Run Simulation
Verify that the Simulink model and Unreal Editor are configured to co-simulate by running a test
simulation.

1 In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation does
not start. Instead, you must start the simulation from the editor.

2 Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated vehicles and other objects in the Unreal
Engine 3D environment.

3 In the Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor.

• If your Simulink model contains vehicles, these vehicles drive through the scene that is open
in the editor.

• If your Simulink model includes sensors, these sensors capture data from the scene that is
open in the editor.

To control the view of the scene during simulation, in the Simulation 3D Scene Configuration block,
select the vehicle name from the Scene view parameter. To change the scene view as the simulation
runs, use the numeric keypad in the editor. The table shows the position of the camera displaying the
scene, relative to the vehicle selected in the Scene view parameter.

 Customize Unreal Engine Scenes Using Simulink and Unreal Editor

2-31

Key Camera View
1 Back left
2 Back
3 Back

right
4 Left
5 Internal
6 Right
7 Front left
8 Front
9 Front

right
0 Overhead

To restart a simulation, click Run in the Simulink model, wait until the Diagnostic Viewer displays the
confirmation message, and then click Play in the editor. If you click Play before starting the
simulation in your model, the connection between Simulink and the Unreal Editor is not established,
and the editor displays an empty scene.

After tuning your custom scene based on simulation results, you can then package the scene into an
executable. For more details, see “Package Custom Scenes into Executable” on page 2-33.

See Also

2 3D Simulation – User's Guide

2-32

Package Custom Scenes into Executable

Package Scene into Executable Using Unreal Engine
1 Open the project containing the scene in the Unreal Editor. You must open the project from a

Simulink model that is configured to co-simulate with the Unreal Editor. For more details on this
configuration, see “Customize Unreal Engine Scenes Using Simulink and Unreal Editor” on page
2-28.

2 In the Unreal Editor toolbar, select Settings > Project Settings to open the Project Settings
window.

3 In the left pane, in the Project section, click Packaging.
4 In the Packaging section, set or verify the options in the table. If you do not see all these

options, at the bottom of the Packaging section, click the Show Advanced expander.

Packaging Option Enable or Disable
Use Pak File Enable
Cook everything in the project content
directory (ignore list of maps below)

Disable

Cook only maps (this only affects
cookall)

Enable

Create compressed cooked packages Enable
Exclude editor content while cooking Enable

5 Specify the scene from the project that you want to package into an executable.

a In the List of maps to include in a packaged build option, click the Adds Element

button .
b Specify the path to the scene that you want to include in the executable. By default, the

Unreal Editor saves maps to the /Game/Maps folder. For example, if the /Game/Maps folder
has a scene named myScene that you want to include in the executable, enter /Game/Maps/
myScene.

c Add or remove additional scenes as needed.
6 Rebuild the lighting in your scenes. If you do not rebuild the lighting, the shadows from the light

source in your executable file are incorrect and a warning about rebuilding the lighting displays
during simulation. In the Unreal Editor toolbar, select Build > Build Lighting Only.

7 (Optional) If you plan to semantic segmentation data from the scene by using a Simulation 3D
Camera block, enable rendering of the stencil IDs. In the left pane, in the Engine section, click
Rendering. Then, in the main window, in the Postprocessing section, set Custom Depth-
Stencil Pass to Enabled with Stencil. For more details on applying stencil IDs for semantic
segmentation, see “Apply Semantic Segmentation Labels to Custom Scenes” on page 2-35.

8 Close the Project Settings window.

 Package Custom Scenes into Executable

2-33

9 In the top-left menu of the editor, select File > Package Project > Windows > Windows (64-
bit). Select a local folder in which to save the executable, such as to the root of the project file
(for example, C:/Local/myProject).

Note Packaging a project into an executable can take several minutes. The more scenes that you
include in the executable, the longer the packaging takes.

Once packaging is complete, the folder where you saved the package contains a
WindowsNoEditor folder that includes the executable file. This file has the same name as the
project file.

Note If you repackage a project into the same folder, the new executable folder overwrites the
old one.

Suppose you package a scene that is from the myProject.uproject file and save the
executable to the C:/Local/myProject folder. The editor creates a file named
myProject.exe with this path:

C:/Local/myProject/WindowsNoEditor/myProject.exe

Simulate Scene from Executable in Simulink

1 In the Simulation 3D Scene Configuration block of your Simulink model, set the Scene source
parameter to Unreal Executable.

2 Set the File name parameter to the name of your Unreal Editor executable file. You can either
browse for the file or specify the full path to the file by using backslashes. For example:

C:\Local\myProject\WindowsNoEditor\myProject.exe

3 Set the Scene parameter to the name of a scene from within the executable file. For example:

 /Game/Maps/myScene

4 Run the simulation. The model simulates in the custom scene that you created.

If you are simulating a scene from a project that is not based on the mwas project, then the scene
simulates in full screen mode. To use the same window size as the default scenes, copy the
DefaultGameUserSettings.ini file from the support package installation folder to your custom
project folder. For example, copy DefaultGameUserSettings.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABrelease>\toolbox\uav\spkg\uavunrealengine\mwas\Config

to:

C:\<yourproject>.project\Config

Then, package scenes from the project into an executable again and retry the simulation.

See Also

2 3D Simulation – User's Guide

2-34

Apply Semantic Segmentation Labels to Custom Scenes
The Simulation 3D Camera block provides an option to output semantic segmentation data from a
scene. If you add new scene elements, or assets (such as traffic signs or roads), to a custom scene,
then in the Unreal Editor, you must apply the correct ID to that element. This ID is known as a stencil
ID. Without the correct stencil ID applied, the Simulation 3D Camera block does not recognize the
scene element and does not display semantic segmentation data for it.

For example, this To Video Display window shows a stop sign that was added to a custom scene. The
Semantic Segmentation Display window does not display the stop sign, because the stop sign is
missing a stencil ID.

 Apply Semantic Segmentation Labels to Custom Scenes

2-35

To apply a stencil ID label to a scene element, follow these steps:

1 Open the Unreal Editor from a Simulink model that is configured to simulate in the 3D
environment. For more details, see “Customize Unreal Engine Scenes Using Simulink and Unreal
Editor” on page 2-28.

2 In the editor window, select the scene element with the missing stencil ID.
3 On the Details pane on the right, in the Rendering section, select Render CustomDepth Pass.

2 3D Simulation – User's Guide

2-36

If you do not see this option, click the Show Advanced expander to show all
rendering options.

4 In the CustomDepth Stencil Value box, enter the stencil ID that corresponds to the asset. If
you are adding an asset to a scene from the UAV Toolbox Interface for Unreal Engine Projects
support package, then enter the stencil ID corresponding to that asset type, as shown in the
table. If you are adding assets other than the ones shown, then you can assign them to unused
IDs. If you do not assign a stencil ID to an asset, then the Unreal Editor assigns that asset an ID
of 0.

Note The Simulation 3D Camera block does not support the output of semantic segmentation
data for lane markings. Even if you assign a stencil ID to lane markings, the block ignores this
setting.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
5 Pole
6 Not used
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used
23 Right one-way sign
24 Not used

 Apply Semantic Segmentation Labels to Custom Scenes

2-37

ID Type
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
58 Curb
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
71 Barricade
72 Motorcycle
73-255 Not used

For example, for a stop sign that is missing a stencil ID, enter 13.

Tip If you are adding stencil ID for scene elements of the same type, you can copy (Ctrl+C) and
paste (Ctrl+V) the element with the added stencil ID. The copied scene element includes the
stencil ID.

5 Visually verify that the correct stencil ID shows by using the custom stencil view. In the top-left

corner of the editor window, click and select Buffer Visualization > Custom Stencil.
The scene displays the stencil IDs specified for each scene element. For example, if you added
the correct stencil ID to a stop sign (13) then the editor window, the stop sign displays a stencil
ID value of 13.

2 3D Simulation – User's Guide

2-38

• If you did not set a stencil ID value for a scene element, then the element appears in black
and displays no stencil ID.

• If you did not select CustomDepth Stencil Value, then the scene element does not appear at
all in this view.

6 Turn off the custom stencil ID view. In the top-left corner of the editor window, click Buffer
Visualization and then select Lit.

7 If you have not already done so, set up your Simulink model to display semantic segmentation
data from a Simulation 3D Camera block. For an example setup, see “Depth and Semantic
Segmentation Visualization Using Unreal Engine Simulation” on page 2-19.

8 Run the simulation and verify that the Simulation 3D Camera block outputs the correct data. For
example, here is the Semantic Segmentation Display window with the correct stencil ID applied
to a stop sign.

 Apply Semantic Segmentation Labels to Custom Scenes

2-39

See Also
Simulation 3D Camera | Simulation 3D Scene Configuration | Simulation 3D UAV Vehicle

More About
• “Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation” on page 2-19
• “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)

2 3D Simulation – User's Guide

2-40

	UAV Toolbox Examples
	Visualize and Playback MAVLink Flight Log
	Flight Instrument Gauge Visualization for a Drone
	Visualize Custom Flight Log
	Tuning Waypoint Follower for Fixed-Wing UAV
	Approximate High-Fidelity UAV model with UAV Guidance Model block
	Motion Planning with RRT for Fixed-Wing UAV
	UAV Package Delivery
	UAV Scenario Tutorial
	Tune UAV Parameters Using MAVLink Parameter Protocol
	Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

	3D Simulation – User's Guide
	Unreal Engine Simulation for Unmanned Aerial Vehicles
	Unreal Engine Simulation Blocks
	Algorithm Testing and Visualization

	Unreal Engine Simulation Environment Requirements and Limitations
	Software Requirements
	Minimum Hardware Requirements
	Limitations

	How Unreal Engine Simulation for UAVs Works
	Communication with 3D Simulation Environment
	Block Execution Order

	Coordinate Systems for Unreal Engine Simulation in UAV Toolbox
	Earth-Fixed (Inertial) Coordinate System
	Body (Non-Inertial) Coordinate System
	Unreal Engine World Coordinate System

	Choose a Sensor for Unreal Engine Simulation
	Simulate Simple Flight Scenario and Sensor in Unreal Engine Environment
	Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation
	Customize Unreal Engine Scenes for UAVs
	Install Support Package for Customizing Scenes
	Verify Software and Hardware Requirements
	Install Support Package
	Set Up Scene Customization Using Support Package

	Customize Unreal Engine Scenes Using Simulink and Unreal Editor
	Open Unreal Editor from Simulink
	Reparent Actor Blueprint
	Create or Modify Scenes in Unreal Editor
	Run Simulation

	Package Custom Scenes into Executable
	Package Scene into Executable Using Unreal Engine

	Apply Semantic Segmentation Labels to Custom Scenes

